12. Explosion into a uniform
medium

* Solution is characterised by two variables:

— The explosion energy E, delivered
instantaneously at a point

— The density p, of the medium

* Note that we ignore the temperature of the
medium (1.e. set Tj=0) so we don’t consider the
role of the thermal pressure of the medium
confining the explosion.

e As explosion propagates out, a shock forms and
the medium is swept up into a thin shell of
shocked gas.
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e Since the shock is
strong we have (for an T, 0= M—
adiabatic shock)
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 If all the mass is swept
into this thin layer
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e Remember RHI1:
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* So for a strong shock
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e So relative to the unshocked gas, the
velocity of the shocked gas U is
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* As the shell grows it gains momentum at a
rate:
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e This momentum gain is provided by the
pressure acting on the inside of the shell, p,,
— Pin #P1
— T, = 0 => no opposing counter pressure from
the unshocked medium.
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* And so the momentum equation (force =
rate of change of momentum) becomes
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* Re-arrange to get
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* But u, is the speed with which the
shock advances on the unshocked
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e Try
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 We now have a shell that grows with time as
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e But we still don’t know a!

* Use the explosion energy E which for an
adiabatic blast wave must be conserved.

* E goes into two forms:

— The kinetic energy of the shell:

— The internal energy



* Internal energy per unit volume is p/(y-1).

* Most of the volume of the bubble created by
the blast wave is in the internal cavity, so
assume that ALL the internal energy is in the
cavity.

e The amount of internal energy is then

475R3 op,
3 y -1

T~

Internal energy/unit volume

E=4—ER31 0U2+ o 290”02}
3 2 y-1y+1
e
2u,
(V+1)
e h
e 4w pull 2 2a
E=:3R + (12.2)
y+1l|ly+1 y-1

* So,using (12.1)
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e But E is conserved, so

60-3=0=a=1/2

e And we get
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e The maximum radius R, of the blast wave
1s reached when

— the pressure behind the shock is similar to that
ahead of the shock.

— At this point the blast wave is no longer a shock,
but just a compression wave



e Estimate R_. by putting
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* But from the energy equation (12.2) with a=1/2 we
have
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» Equating these we have
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So the criterion p, ~ p, 1S approximately

— uq ~ C4( (transition to subsonic flow)

— Blast wave reaches the radius where the explosion
energy = original thermal energy of the original gas
contained in that sphere

— NB: criteria are approximate because there is no
sudden transition between the blast wave and sound
wave behaviour.



