## <u>Lecture 2: The First Second</u> Baryogenisis: origin of neutrons and protons

- · Hot Big Bang
- · Expanding and cooling
- "Pair Soup" free particle + anti-particle pairs
- Matter-Antimatter symmetry breaking
- Annihilation => 1 quark per 10<sup>9</sup> photons
- "Quark Soup" => Ups and Downs
- Quarks confined into neutrons and protons
- Proton/Neutron ratio when deuterium <sup>2</sup>D forms



In the early Universe

(kT > E) photons break up atomic nuclei.

Binding energies:

Deuterium ~ 2 MeV  $T \sim 10^9 \text{ K}$   $t \sim 100 \text{ s}$  $Iron \sim 7 \text{ MeV}$   $T \sim 10^{10} \text{ K}$   $t \sim 1 \text{ s}$ 

Earlier still, neutrons and protons break into quarks.

Rest mass  $(E = m c^2)$ :

neutron ~ 939.6 MeV  $T \sim 10^{12} \text{ K}$   $t \sim 10^{-4} \text{ s}$ 

proton  $\sim 938.3 \text{ MeV}$   $I \sim 10 \text{ K}$  I

This takes us back to the quark soup!

Now run the clock forward!

## Presently Known Fundamental Particles

Early Universe:  $t < 10^{-4} \text{ s}$   $T > 10^{12} \text{ K}$ Grand Unified Theories (GUTs) predict

all fundamental particles exist in <u>roughly</u> equal numbers.

quarks
6 "flavours":

Top ... Bottom ...
Charm ... Strange ...
Up ... Down ...
3 "colours": (RGB)

Immune to strong force leptons neutrinos  $\begin{array}{c|cccc}
\tau & \nu_{\tau} \\
\mu & \nu_{\mu} \\
e & \nu_{\tau}
\end{array}$ 

gluons (exchanged by quarks causing exchange of bosons

W<sup>±</sup>, Z<sup>0</sup>

Photon: γ

Higgs (X)

"flavour" and "colour") Higgs (X)
18 quarks, 3 leptons, 3 neutrinos, 18x17 gluons, 5 bosons
+ anti-particles in equal numbers

## "Pair Soup": When $k T >> m c^2$ ,

enough energy to create particle / anti-particle pairs, pairs annihilate creating photons, collisions / decays create new particles, change one type to another.

(different forms of energy)

Expe
all pa
particle

Early Universe

Improved Surainm research trainers

net cl

Expect: equal numbers of all particles and antiparticles.

net charge = 0net colour = 0

net spin = 0

### The Photon / Baryon ratio ~ 109

Expect:  $N_{\gamma} \sim N_{X} \sim N_{\overline{X}} \sim N_{q} \sim N_{\overline{q}} \cdots$ 

Because: over-abundant species undergo more collisions, transforming to other species, until *roughly* equal numbers.

Later, 3 quarks => 1 baryon, expect  $N_{photon} \sim N_{baryon}$ . But today, we observe  $N_{photon} / N_{baryon} \sim 10^9$ . Why?

#### Why more particles than anti-particles?

If equal numbers, annihilation when  $k T < mc^2$ eliminates all, leaving only photons.

**Symmetry breaking:**  $T \sim 10^{27} \text{ K}$   $t \sim 10^{-33} \text{ s}$ .  $10^9 + 1$ 1 quark quarks → ~10<sup>9</sup> photons anti-quarks 109

Why a tiny excess of particles? Requires a violation of CP (charge conjugation and parity) and this is observed in weak interactions (K<sup>0</sup> meson decays).





## Why is there something, rather than nothing?



# After the Great Annihilation... All the antimatter, and all but a tiny part of the matter were gone ... and that tiny part is us Angela Romano

# Pairs => Quark Soup => Ups and Downs

When  $k T < m c^2$ , particle/antiparticle pairs of this mass can no longer be created - they "freeze out".

Massive particles then decay to lower-mass particles plus photons.

S C B T 0.10 1.27 4.20 171.2 quark flavour:  $m c^2 (\text{GeV})$ 

X, W, Z bosons also "freeze out", decay to quarks. Heavy quarks (S, C, T, B) "freeze out", transmute into lightest quarks, U and D (2.4 and 4.8 MeV).

Leaves a "quark soup" of free U and D quarks (+ leptons, photons, gluons, residual heavy quarks and bosons).

## Quark confinement => Hadron Era

 $t \sim 10^{-2} \text{ s}$  $T \sim 10^{13} \, \text{K} \, (1 \, \text{GeV})$ 

Strong (colour) force confines U and D quarks to form "colourless" hadrons.

Baryons (3 quarks each of different "colour"):

DDU → neutron (939.6 MeV)

UUD → proton (938.3 MeV)

*Mesons* ( quark + anti-quark of same "colour") pions:  $(U\overline{U}, U\overline{D}, D\overline{U}, D\overline{D})$ 

Others, e.g. UDS, are rare.

Produced in accelerators but rapidly decay.

Only protons and neutrons are relatively stable.

## **Hadron Formation**



Strong (colour) force binds 3 quarks to form "colourless" baryons. UUD = proton DDU = neutron

## The neutron-proton ratio

Quark charges U: +2/3 D: -1/3

Neutron decay: (DDU) --> (UUD) (weak interaction D->U)

 $n \rightarrow p + e^- + v_e + 0.8 \text{ MeV}$ 

Energy conservation: 939.6 = 938.3 + 0.5 + 0 + 0.8

When kT >> 0.8 MeV, the reaction is reversible and  $N_n \sim N_p$ .

Thermal equilibrium gives a Maxwell-Boltzmann distribution:

$$N \propto m^{3/2} e^{(-m c^2/kT)}$$

$$\frac{N_n}{N_p} = \left(\frac{m_n}{m_p}\right)^{\frac{3}{2}} e^{\left[-\frac{(m_n - m_p)c^2}{kT}\right]}$$

At  $k T \sim 0.8$  MeV,  $n \rightarrow p + e^- + v_e^-$  no longer reversible.

$$\frac{N_n}{N_p} = \left(\frac{939.6}{938.3}\right)^{\frac{3}{2}} e^{\left[-\frac{(939.6 - 938.3)}{0.8}\right]} \cong \frac{1}{5}$$

5 protons per neutron

At  $t \sim 400$  s and  $T \sim 10^9$  K (0.1 MeV),

protons and neutrons confined into nuclei

→ NUCLEOSYNTHESIS (generating atomic nuclei)

First step: Deuterium  $p + n \rightarrow {}^{2}D + 2.2 \text{ MeV}$ 

Nucleosynthesis starts at  $k T \sim 0.1$  MeV. But,  $^2D$  binding energy E = 2.2 MeV, so why does nucleosynthesis not start at 2.2 MeV?

Because  $N_{photon} / N_{baryon} \sim 10^9$ .

Photons in the high-energy tail of the blackbody break up  $^2$ D until  $k T \sim 0.1$  MeV.



Photons in the blackbody tail:

$$N_{\gamma}(h\nu > E) = \int_{E/h}^{\infty} \frac{\varepsilon_{\nu} \, d\nu}{h \, \nu} \approx N_{\gamma} \exp(-E/k \, T)$$

Set T to get 1 photon with hv > E = 2.2 MeV per baryon:

$$N_{\nu} \exp(-E/kT) \approx N_{b}$$

$$\frac{E}{kT} \approx \ln\left(\frac{N_{\gamma}}{N_b}\right) \approx \ln\left(10^9\right) \approx 20$$

With E = 2.2 MeV need  $k T \sim 0.1 \text{ MeV}$ .

## Neutron decay

Free neutron decay time  $\tau \sim 940 \text{ s}$ Cooling time from 0.8 MeV to 0.1 MeV:  $t \sim 300 \text{ s}$ . From radioactive decay:

$$N_n(t) = N_n(0) e^{-t/\tau} = 0.73 N_n(0)$$
  
$$N_n(t) = N_n(0) + 0.27 N_n(0)$$

$$\frac{N_p(t)}{N_n(t)} = \frac{N_p(0) + 0.27 \, N_n(0)}{0.73 \, N_n(0)} \approx \frac{5 + 0.27}{0.73} \approx 7$$

7 protons per neutron

## Neutron decay

Free neutron decay time  $\tau \sim 940 \text{ s}$ Cooling time from 0.8 MeV to 0.1 MeV:  $t \sim 300 \text{ s}$ . From radioactive decay (weak force changing D->U):

neutrons:  $n(t) = n(0) e^{-t/\tau} = 0.73 n(0)$ 

protons:  $p(t) = p(0) + n(0) (1 - e^{-t/\tau}) = p(0) + 0.27 n(0)$ 

$$\frac{p(t)}{n(t)} = \frac{p(0) + 0.27 \, n(0)}{0.73 \, n(0)} \approx \frac{5 + 0.27}{0.73} \approx 7$$

7 protons per neutron

# Summary

The Universe expands and cools, changing from a "soup" of particles and anti-particles  $(kT > mc^2)$ , to a "soup" of quarks

( small  $10^{-9}$  particle / anti-particle asymmetry  $=>10^9$  photons per quark) to a "soup" of neutrons and protons

( quarks => U,D, confined as UUD and UDD ). At  $T \sim 0.8$  MeV, thermal equilibrium gives p/n = 5. At  $T \sim 0.1$  MeV, neutron decay gives p/n = 7. n + p => D + 2.2 MeV leaving 6 protons per Deuterium nucleus. Next time: *Nucleosynthesis*