Inclinations

- Radial velocities give minimum masses
 \[m \sin^2 i \]
 \[m' \sin^3 i / M^2 \]

- Need inclinations
 - Astrometric orbits
 - Eclipsing binaries
 - Polarimetry
 - Apsidal motion

Astrometric Orbits

- Interferometry measures the relative orbit (milli-arcsec accuracy).
- Fit elliptical orbit model to \(x(t) \) and \(y(t) \).

Polarimetry

- Scattered light is polarised (e.g., our sky)

Eclipsing Binaries

- Binary properties from eclipses
 - Sizes, shapes of stars, inclination,
 - Temperatures, limb darkening, apsidal motion
 - 4 contact phases:
 - 1
 - 2
 - 3
 - 4
 - Primary eclipse
 - Secondary eclipse

Partial Eclipse

- \(R_1 > R_2 \), \(\theta = 2 \phi \)

- Edge-on \((i = 90^\circ) \):
 - 4 contact phases:
 - \(R_1 \pm R_2 = a \sin \theta \)
 - \(R_1 / a = [\sin \theta_1 - \sin \theta_2] / 2 \)
 - \(R_2 / a = [\sin \theta_1 + \sin \theta_2] / 2 \)
Eclipses

- **4 contact phases**
 - $R_i - R_c = a \sqrt{\sin \theta + \cos \theta \cos i}$
 - 4 measurements: $\theta, \psi, \phi, \phi_i$
 - 4 parameters: a, R_i, i, ϕ_i

- Mideclipse: $\theta = 0$
- Total eclipse: $a \cos \theta = R_i - R_c$
- Partial eclipse: $R_i - R_c < a \cos \theta < R_i + R_c$

Application to Binary Pulsars

- **Binary system where one star is a pulsar**
 - Emits ‘pulses’ of radiation
 - Accurate timing possible (accurate clocks)
 - Need narrow pulses
 - Radio signals from neutron stars

- **Solitary pulsar**
 - If at 0 velocity relative to us
 - Time between pulses, $dt = \text{constant}$ (unless being spun up/down)
 - If at V_{rel} relative velocity
 - $dt = \text{constant} \times \text{pulse number}$
 - If pulsar spins up, dt decreases with pulse number
 - Concave curve
 - If pulsar spins down, dt increases with pulse number
 - Convex curve

Timing Residuals

- **O-C** = observed time minus calculated time

- Period too long
- Correct period
- Period too short

Binary Pulsars

- **In binary system, time between pulses affected by orbital motions**
 - Due to light travel time (distance) changing along orbit

- Pulsar orbit: $r_p = a_p \left(\frac{1 + e^2}{1 - e \cos \theta} \right)$
- Distance along line of sight: $z_p = r_p \sin i \sin (\theta + \omega)$
- Light travel time:
 - Circular orbit: $z_p = a_p \sin i \left(\frac{2\pi}{P} (t - T_p) \right)$

Light travel time

- Observer:
 - $z_p = a_p \sin i \left(\frac{2\pi}{P} (t - T_p) \right)$

Redder and Bluer Colour Changes

- Colour changes $\rightarrow T, L$
Binary Pulsar timing residuals

- Time difference between predicted, \(t_a \), and actual (binary) pulse arrival times, \(t_n \), is

\[
\Delta t = t_a - t_n = a t + b \sin \left(\frac{2\pi}{P} (t - T_0) \right)
\]

- \(P \) is the orbital period, \(T_0 \) is a reference time
- \(a, b \) are determined by the velocity of the pulsar
- \(a \): from systematic velocity
- \(b \): from Keplerian velocity
- for circular orbits: \(b = \left(\frac{a_p}{c} \right) \sin i \)

Mass determinations

- visible companion star
 - O-B star in High-Mass X-ray Binaries (HMXB)
 - A-K star in Low-Mass X-ray Binaries (LMXB)

\[
f(m_i) = \frac{m_i \sin i}{M^2} \sin \left(\frac{1 - \cos^2 i}{\cos^2 i} \frac{P}{K} \right) \frac{2\pi}{2K} G
\]

\[
mass ratio, q, \quad q = \frac{m_2}{m_1} = \frac{a_2 \sin i}{a_1 \sin i}
\]

- If inclination, \(i \), can be found, then masses follow

Frequency shifts

- Binary orbit also affects pulsar frequency
 - radio pulsars, very narrow pulse widths
 - pulse frequency affected by orbital velocity
 - Doppler shift:

\[
\Delta f = f \frac{V_{\text{rad}}}{c} = f \frac{\dot{z}}{c}
\]

- gives a phase lag of:

\[
\Delta \Phi = \int_{t_0}^{t} \Delta f \, dt = f_0 \frac{\dot{z}}{c} (t - T_0)
\]

Pulsar Phase lag

- Combined phase lag is
 - from light travel time due to orbit

\[
\Delta \phi_0 = -f_0 \frac{\dot{z}}{c}
\]
 - and from Doppler shift

\[
\Delta \phi_0 = f_0 \frac{\dot{z}}{c}
\]

- hence

\[
\Delta \phi = \Delta \phi_0 + \Delta \phi_1 = \left[f_0 \frac{\dot{z}}{c} - f_0 (t - T_0) \right]
\]

- generally

\[
\Delta \phi_0 = 0.001 \Delta \phi_1
\]

- but measurable in radio pulsars