Inclinations

• Radial velocities give minimum masses

\[
\begin{align*}
SB2: \quad m \sin^3 i \\
SB1: \quad \frac{m^3 \sin^3 i}{M^2}
\end{align*}
\]

• need inclinations
 – astrometric orbits
 – eclipsing binaries
 – polarimetry
 – apsidal motion
Astrometric Orbits

Interferrometry measures the relative orbit (milli-arcsec accuracy).

Fit elliptical orbit model to $x(t)$ and $y(t)$.

Get inclination, hence masses
Polarimetry

Scattered light is polarised (e.g. our sky)

Get inclination, hence masses

AS 4024 Binary Stars and Accretion Disks
Eclipsing Binaries

- **Binary properties from eclipses**
 - sizes, shapes of stars, inclination,
 - temperatures, limb darkening, apsidal motion
 - 4 contact phases:
 - 1
 - 2
 - 3
 - 4
 - primary eclipse
 - secondary eclipse

Diagram showing phases of an eclipse with graphs showing magnitudes vs. orbital phase.
Partial Eclipse
Eclipses

\[R_1 > R_2 \quad \theta \equiv 2\pi \phi \]

edge-on \ (i = 90^\circ)\ :
4 contact phases:
\[R_1 \pm R_2 = a \sin \theta \]

\[
\frac{R_2}{a} = \frac{\sin \theta_1 - \sin \theta_2}{2} \\
\frac{R_1}{a} = \frac{\sin \theta_1 + \sin \theta_2}{2}
\]

\[a \sin \Theta = R_1 + R_2 \]
Eclipses

4 contact phases:

\[
R_1 \pm R_2 = a \sqrt{\sin^2 \theta + \cos^2 \theta \cos^2 i}
\]

\[
= a \sqrt{1 + \cos^2 \theta \sin^2 i}
\]

4 measurements: \(\phi_1, \phi_2, \phi_3, \phi_4 \)

4 parameters: \(\frac{R_1}{a}, \frac{R_2}{a}, i, \phi_0 \)

mid eclipse: \(\theta = 0 \)

total eclipse: \(a \cos i < R_1 - R_2 \)

partial eclipse: \(R_1 - R_2 < a \cos i < R_1 + R_2 \)
Colour changes $\rightarrow T, L$
Application to Binary Pulsars

- **binary system where one star is a pulsar**
 - emits ‘pulses’ of radiation
 - accurate timing possible (accurate clocks)
 - need narrow pulses
 - radio signals from neutron stars

- **solitary pulsar**
 - if at 0 velocity relative to us
 - time between pulses, $dt = \text{constant}$ (unless being spun up/down)
 - if at V_{rel} relative velocity
 - $dt = \text{constant} \times \text{pulse number}$
 - if pulsar spins up, dt decreases with pulse number
 - concave curve
 - if pulsar spins down, dt increases with pulse number
 - convex curve
Timing Residuals

\[O-C = \text{observed time minus calculated time} \]

- Period too long
- Correct period
- Period too short

- Period increasing
- Period constant
- Period decreasing

Cycle number
Binary Pulsars

- In binary system, time between pulses affected by orbital motions
 - due to light travel time (distance) changing along orbit

![Graph showing pulse arrival time vs. pulse number for a binary system](image)
Light travel time

pulsar orbit: \[r_p = \frac{a_p (1+e^2)}{1+e \cos \theta} \]

distance along line of sight:
\[z_p = r_p \sin i \sin(\theta + \omega) \]

light travel time:
\[z_p = \frac{a_p \sin i}{c} \left(\frac{1+e^2}{1+e \cos \theta} \right) \sin(\theta + \omega) \]

circular orbit
\[z_p = \frac{a_p \sin i}{c} \sin \left(\frac{2\pi}{P} (t - T_0) \right) \]
light travel time
Binary Pulsar timing residuals

- Time difference between predicted, $j_n \tau$, and actual (binary) pulse arrival times, t_n, is

$$\Delta t = t_n - j_n \tau = a \, t + b \sin \left[\frac{2\pi (t - T_0)}{P} \right]$$

- P is the orbital period, T_0 is a reference time
- a, b are determined by the velocity of the pulsar
 - a: from systematic velocity
 - b: from Keplerian velocity
- for circular orbits: $b = \left(\frac{a_p}{c} \right) \sin i$
Binary Pulsar Orbits

radial velocity

timing

AS 4024

Binary Stars and Accretion Disks
Mass determinations

- **visible companion star**
 - O-B star in High-Mass X-ray Binaries (HMXB)
 - A-K star in Low-Mass X-ray Binaries (LMXB)

\[
a_c \sin i = \frac{(1-e^2)^{1/2} K_c P}{2\pi}
\]

mass function

\[
f(m_p) = \frac{m_p^3 \sin^3 i}{M^2} = \frac{(1-e^2)^{3/2} K_c^3 P}{2\pi G}
\]

mass ratio, q,

\[
q = \frac{m_p}{m_c} = \frac{a_c \sin i}{a_p \sin i}
\]

- If inclination, \(i\), can be found, then masses follow
Frequency shifts

- **Binary orbit also affects pulsar frequency**
 - radio pulsars, very narrow pulse widths
 - pulse frequency affected by orbital velocity
 - Doppler shift:

\[
\Delta f = f \frac{V_{rad}}{c} = f \frac{\dot{z}}{c}
\]

- gives a phase lag of:

\[
\Delta \phi = \int_{T_0}^{t} \Delta f \, dt \approx f_0 \frac{\dot{z}}{c} (t - T_0)
\]

\[
= f_0 \frac{\dot{z}}{c} \left[\frac{z}{c} \right]
\]
Pulsar Phase lag

- **Combined phase lag is**
 - from light travel time due to orbit
 \[\Delta \phi_L = -f \frac{Z}{c} \]
 - and from Doppler shift
 \[\Delta \phi_D = f_0 \frac{\dot{z}}{c} \left[\frac{Z}{c} \right] \]

- hence
 \[\Delta \phi = \Delta \phi_D + \Delta \phi_L \approx \left[\frac{Z}{c} \right] \left[f_0 \frac{\dot{z}}{c} - f_0 - \dot{f}_0 (t - T_0) \right] \]

- generally
 \[\Delta \phi_D \approx 0.001 \Delta \phi_L \]

- but measurable in radio pulsars