The Two-Body Problem

- **Newtonian gravity**
- **2 point masses**
 - good approx for stars

\[r = r_1 - r_2 \]
\[\hat{r} = \frac{r}{r} \]

total mass: \[M = m_1 + m_2 \]

centre of mass: \[R = \frac{m_1 r_1 + m_2 r_2}{M} \]
Two-Body motion

• **Newton's laws of motion + law of gravitation**

Equations of motion:

\[F_1 = m_1 \ddot{r}_1 = -\frac{G m_1 m_2}{r^2} \hat{r} \quad F_2 = m_2 \ddot{r}_2 = -F_1 \]

add the equations

\[m_1 \ddot{r}_1 + m_2 \ddot{r}_2 = 0 \]

integrate \(dt \)

\[m_1 \dot{r}_1 + m_2 \dot{r}_2 = A \]

again

\[m_1 r_1 + m_2 r_2 = A t + B \]

definition of \(R \)

\[M \ R = A t + B \]

\[M \ R = A t + B \]

• ∴ Centre of mass moves with constant velocity
 - (unless acted on by an external force)
Relative Motion

- Important for eclipses
- Subtract two equations of motion

\[
\ddot{r} = \ddot{r}_1 - \ddot{r}_2 = \frac{-G M}{r^2} \hat{r}
\]

- Multiply by \(\mu = \frac{m_1 m_2}{M} = \text{“reduced mass”} \)

\[
\mu \ddot{r} = -\frac{G M \mu}{r^2} \hat{r} = -\frac{G m_1 m_2}{r^2} \hat{r}
\]

- Relative orbit is as if:
 - orbiter has reduced mass \(\mu = \text{reduced mass} \)
 - stationary central mass is \(M = \text{total mass} \).
The Relative Orbit

\[\mu = \frac{m_1 m_2}{M} \]

Important for Eclipses

\[M = m_1 + m_2 \]
2 Barycentric Orbits

Important for Radial Velocities
Barycentric Orbits

• **Important for radial velocity curves**

\[m_1 R_1 + m_2 R_2 = 0 \quad \text{centre of mass frame} \]

\[r = R_1 - R_2 = \frac{m_1 + m_2}{m_2} R_1 = \frac{M}{m_2} R_1 = - \frac{M}{m_1} R_2 \]

Equations of motion:

\[\ddot{R}_1 = -\frac{G m_2}{r^3} r \quad \ddot{R}_2 = -\frac{G m_1}{r^3} (-r) \]

– Eliminate \(r^3 \) using \(r = f(R_i) \) and \(r = f(R_i) \):

\[\ddot{R}_1 = -\frac{G m_2}{M^2} \frac{R_1}{R_1^3} \quad \ddot{R}_2 = -\frac{G m_1}{M^2} \frac{R_2}{R_2^3} \]

– the acceleration of each star relative to the centre of mass
Relative vs Barycentric orbits

- \((a, e, P, v) \) relative orbit
- \((a, e, P, v)_{1,2} \) barycentric orbits
- \(m_1 \) and \(m_2 \) on straight line thru C

\[
P_1 = P_2 = P \quad e_1 = e_2 = e
\]
\[
a_1 = a \frac{m_2}{M} \quad a_2 = a \frac{m_1}{M}
\]
\[
a = a_1 + a_2 \quad M = m_1 + m_2
\]
\[
a_1 : a_2 : a = V_1 : V_2 : V = m_2 : m_1 : M
\]

Kepler:
\[
\frac{4\pi^2}{GP^2} = \frac{M}{a^3} = \frac{m_2^3}{M^2} = \frac{m_1^3}{M^2}
\]
Orbital Speed

orbital speed: \(V^2 = \dot{r}^2 + r^2 \dot{\theta}^2 \)

conic section: \(r = \frac{\ell}{1 + e \cos \theta} \)

\[
\frac{d}{dt} \left[1 + e \cos \theta = \frac{\ell}{r} \right] \Rightarrow -e (\sin \theta) \dot{\theta} = -\frac{\ell}{r^2} \dot{r}
\]

specific angular momentum: \(r^2 \dot{\theta} = L \)

\[
\dot{r} = \frac{r^2 \dot{\theta}}{\ell} e \sin \theta = \frac{L}{\ell} e \sin \theta
\]

\[
r \dot{\theta} = \frac{L}{r} = \frac{L}{\ell} (1 + e \cos \theta)
\]
Orbital Speed

\[V^2 = \left(\frac{L}{\ell} \right)^2 \left[e^2 \sin^2 \theta + (1 + e \cos \theta)^2 \right] \]

\[= \left(\frac{L}{\ell} \right)^2 \left[e^2 + 1 + 2e \cos \theta \right] \]

\[= \left(\frac{L}{\ell} \right)^2 \left[2(e \cos \theta + 1) + e^2 - 1 \right] \]

\[V^2 = \frac{L^2}{\ell} \left[\frac{2}{r} - \frac{1 - e^2}{\ell} \right] \]

\[\ell = \frac{L^2}{G M} \]

\[\frac{L}{\ell} = \frac{G M}{L} \]
Orbital Speed

\[V^2 = \frac{L^2}{\ell} \left[\frac{2}{r} - \frac{1-e^2}{\ell} \right] \]

ellipse: \[\ell = a(1-e^2) \quad L^2 = GM \ell \]

\[V^2 = GM \left[\frac{2}{r} - \frac{1}{a} \right] \]

<table>
<thead>
<tr>
<th>Shape</th>
<th>(e)</th>
<th>(\ell)</th>
<th>(V^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ellipse</td>
<td>(e < 1)</td>
<td>(\ell = a(1-e^2))</td>
<td>(V^2 = GM \left[\frac{2}{r} - \frac{1}{a} \right])</td>
</tr>
<tr>
<td>circle</td>
<td>(e = 0)</td>
<td>(\ell = a)</td>
<td>(V^2 = \frac{GM}{a})</td>
</tr>
<tr>
<td>parabola</td>
<td>(e = 1)</td>
<td></td>
<td>(V^2 = \frac{2GM}{r})</td>
</tr>
<tr>
<td>hyperbola</td>
<td>(e > 1)</td>
<td>(\ell = a(1-e^2))</td>
<td>(V^2 = GM \left[\frac{2}{r} + \frac{1}{a} \right])</td>
</tr>
</tbody>
</table>
Energy of Orbit

Kinetic energy:

\[KE = T = \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 = \frac{m_1 m_2}{2 M} V^2 \]

orbital speed:

\[V^2 = G M \left(\frac{2}{r} - \frac{1}{a} \right) \]

Potential energy:

\[PE = W = -\int_{r}^{\infty} \frac{G m_1 m_2}{r^2} dr = -\frac{G m_1 m_2}{r} \]

Total energy:

\[E = T + W = -\frac{G m_1 m_2}{2 a} < 0 \]

Binding energy:

\[-E > 0 \]
Angular momentum of the orbit

- **Angular momentum vector** \mathbf{J}, defines orbital plane
 - $\mathbf{J} = m_1 \mathbf{L}_1 + m_2 \mathbf{L}_2$ and $L^2 = G M a (1-e^2)$
 and $L_1^2 = G \left(\frac{m_2^3}{M^2} \right) a_1 (1-e^2)$
 and $a_1/a = m_2/M$
 - same for \mathbf{L}_2
 - hence
 \[
 L_1 = \frac{m_2^2}{M^2} L; \quad L_2 = \frac{m_1^2}{M^2} L
 \]
 therefore
 \[
 J^2 = \frac{G m_1^2 m_2^2}{M} a (1-e^2)
 \]
 and the final expression for J is
 \[
 J = \frac{2\pi}{P} \frac{a^2 m_1 m_2 \sqrt{1-e^2}}{M}
 \]
Orbital Angular momentum

- **Given masses** m_1, m_2 and **Energy** E,
 - the angular momentum J determines the shape of the orbit
 - i.e. the eccentricity (or the conic section parameter l)

- **For given** E,
 - circular orbits have maximum J
 - J decreases as $e \rightarrow 1$
 - orbit becomes rectilinear ellipse

- **Relation between** E, and J very important in determining when systems interact mass exchange and orbital evolution