Exoplanets from microlensing: First results and future prospects

Martin Dominik
(md35@st-andrews.ac.uk)

University of St Andrews, School of Physics \& Astronomy, North Haugh, St Andrews, KY16 9SS, United Kingdom
ABSTRACT. Amongst all techniques for detecting extra-solar planets, galactic microlensing is singled out by some unique characteristics, which allow to provide otherwise inaccessible information about their abundance and distribution of properties. The detection efficiency reaches a maximum for orbital separations of $1-10 \mathrm{AU}$, giving preference to system like our own. Planets with large orbital periods can be detected since the planetary-signal duration is mass-dependent instead, ranging from hours (earths) to days (jupiters). Being limited by the size of the observed stars whose light is gravitationally bent by the parent stars of the planets, microlensing is the only technique able to pick up a signal from a second Earth at the time being, albeit with a small probability. The parent stars are located in the Galactic disk ($\sim 1 / 3$) or bulge ($\sim 2 / 3$) at several kpc distance. By monitoring M31 rather than the Galactic bulge, it is even possible to obtain upper abundance limits on giant planets around M31 stars. Microlensing therefore provides a unique opportunity to gain observational evidence about planets surrounding stars in populations distinct from the one that comprises our neighbourhood, among which the distribution of stellar metallicity, being a critical parameter for planetary abundance, differs significantly. With the parent stars being selected according to their abundance and mass, but regardless of their luminosity, microlensing prefers M-dwarfs, which due to their faintness are not prominent targets in exoplanet searches relying on other detection techniques. In order to be able to properly characterize planetary deviations, the daily sampling by microlensing surveys such as OGLE or MOA is enhanced by follow-up telescope networks like PLANET, μ FUN, or RoboNet, providing a dense (hourly) round-the-clock coverage. The recent years have seen the first detections of giant planets and the determination of significant upper abundance limits. If 10% of the considered lens stars are surrounded by planets, powerful campaigns could detect a hundred giant planets, tens of neptunian planets and several terrestrial planets over the next five years.

Galactic microlensing

Bending of light received from stars in the Galactic Bulge or M31 due to the gravitational field of intervening stars (potentially surrounded by planets)

Daily sampling of the Galactic bulge by OGLE and MOA surveys yields 700-1000 microlensing alerts per year
(courtesy of OGLE collaboration)

PLANET telescope network

PLANET involves 32 collaborators affiliated with 18 institutions in 10 countries, led by Jean-Philippe Beaulieu (Institut d'Astrophysique de Paris, Paris, France) Martin Dominik (University of St Andrews, St Andrews, United Kingdom)

Nearly-continuous round-the-clock coverage of selected microlensing events with photometric precision of 1-2 \%
Additional/former telescopes:
ESO La Silla Dutch 0.9 m
ESO La Silla 2.2 m
CTIO 0.9 m
Yale-CTIO 1.0 m
Yale-CTIO
MSO $50^{\prime \prime}$
Co-operation with RoboNet
Liverpool 2.0m
Faulkes North 2.0 m
Faulkes South 2.0 m
http://planet.iap.f

Unique characteristics for planet detection

- parent stars are in the Galactic bulge or disk at several kpc distance, or in M31
- moderate orbital radii of $1-10 \mathrm{AU}$ are preferred
- duration of planetary signal depends on mass rather than orbital period, ranging between hours (earths) and days (jupiters)
- signal limited by the size of the source stars, achievable photometry allows earths or even marses (spacebased campaign) to be detected
- selection of parent stars (by chance) on basis of their abundance and mass, irrespective of their luminosity, makes M-dwarfs a preferred type

Photometric light curves

Limits on planetary abundance

Detected planets

OGLE 2003-BLG-235 / MOA 2003-BLG-53

$M \sim 0.36 M_{\odot}, a \sim 3.8 \mathrm{AU}, P \sim 12 \mathrm{yr}$

Data basis: PLANET observations on 42 wellcovered events between 1997 and 1999
Fractions $f(d, q)$ of lens stars having a companion with mass ratio q at the orbital radius parameter d that are excluded at 95% confidence level. From inside to outside: $f=3 / 4$ $2 / 3,1 / 2,1 / 3$, and $1 / 4$.
With M being the lens mass and D_{L} or D_{S} denoting lens or source distance, respectively, a characteristic scale is given by the Einstein radius

$$
r_{\mathrm{E}}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{\mathrm{L}}\left(D_{\mathrm{S}}-D_{\mathrm{L}}\right)}{D_{\mathrm{S}}}}
$$

and d denotes the instantaneous orbital separation projected and d denotes the instantaneous orbital separation projected the parent (lens) star.
With $r_{\mathrm{E}} \sim 2.5 \mathrm{AU}$, more than $2 / 3$ of the lens stars (M dwarfs) are not surrounded by jupiter-mass companions at orbital radii between 1.5 AU and 4 AU .

$m \sim 2.7 M_{\text {jup }}, M \sim 0.45 M_{\odot}$
$a \sim 2.2 \mathrm{AU}, P \sim 5$ yr $o r \quad a \sim 3.7 \mathrm{AU}, P \sim 11 \mathrm{yr}$
ore detections to follow
Capabilities of microlensing searches

	Galactic bulge		space
	ground	M31	
number of source stars	$\sim 10^{7}$	$\sim 10^{8}$	$\sim 10^{10}$
resolution of source stars	resolved/crowded	well-resolved	unresolved
telescope time	dedicated	dedicated	$0.5-2.5 \mathrm{~h}$ per night
field of view [sq deg]	$0.004-0.03$	2	$0.01-1$
number of fields	~ 20	1	$1-8$
monitored during night	1%	0.3%	$5-10 \%$
photometric accuracy	$1.5-2.5 \mathrm{~h}$	$10-15$ min	$4-6 \mathrm{~h}$
mean sampling interval	$\sim 300-600$	~ 5000	$\sim 150-400$
total event rate [yr ${ }^{-1}$]	giants	mainly	giants
useful types	$A_{0} \gtrsim 2$	$A_{0} \gtrsim 1.05$	$A_{0} \gtrsim 10$
of source stars	$200-250$	~ 5000	$\sim 35-100$
useful peak magnifications	main-sequence stars	main-sequence stars	$\sim 35 \%$ (jupiters)
rate of useful events [yr $\left.{ }^{-1}\right]$	$\sim 25 \%$ (jupiters)	$\sim 25 \%$ (jupiters)	$\sim 10 \%$ (saturns)
planet detection efficiency	$\sim 2 \%$ (earths)	$\sim 0.7 \%$ (earths)	$15-35$ jupiters
	$50-60$ jupiters	1200 jupiters	$4-10$ saturns
planet probing rate [yr ${ }^{-1}$]	$4-5$ earths	30 earths	$3-7 \%$ (jupiters)
upper limit on planetary	$\sim 2 \%$ (jupiters)	0.1% (jupiters)	$10-30 \%$ (saturns)
abundance within 3 years	$20-25 \%$ (earths)	$\sim 3 \%$ (earths)	M31
location of parent stars	Galactic disk and bulge	Galactic disk and bulge	difficult
extraction of	fair (jupiters)	good	or even impossible
planet parameters	difficult (earths)	no	for $\sim 33 \%$
identification of	of the events	no	
parent stars	no	yes	no
isolated and			
wide-orbit planets			

References

Albrow M.D., et al. (PLANET collaboration), 2000, ApJ 535, 176
Albrow M.D., et al. (PLANET collaboration), 2001, ApJ 556, L113
Bond I.A., et al. (MOA and OGLE collaborations), 2004, ApJ 606, L155
Covone G., de Ritis R., Dominik M., Marino A.A., 2000, A\&A 357, 816
Dominik M., 2002, Napoli Series on Physics \& Astrophysics (Bibliopolis, Napoli) 6, 87
Dominik M., et al. (PLANET collaboration), 2002, P\&SS 50, 299
Gaudi B.S., et al. (PLANET collaboration), 2002, ApJ 566, 463
Udalski A., Kubiak M., Szymański M., 1997, AcA 47, 319
Udalski A., et al. (OGLE, μ FUN, MOA, and PLANET/RoboNet collaborations), preprint astro-ph/0505451

