Testing Gravity in the Solar System: Empirical Foundations of General Relativity

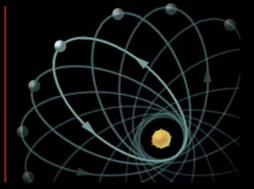
Slava G. Turyshev

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91009 USA

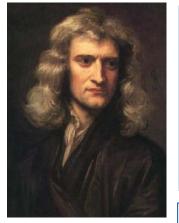
Alternative Gravities & Dark Matter Workshop Royal Observatory, Edinburgh, Scotland, 20-22 April 2006

TESTING GRAVITY IN THE SOLAR SYSTEM Triumph of Mathematical Astronomy in 19th Century

Discovery of Neptune: 1845



Urbain LeVerrier (1811-1877)


- 1845: the search for Planet-X:
 - − Anomaly in the Uranus' orbit \rightarrow Neptune
 - − Anomalous motion of Mercury \rightarrow Vulcan

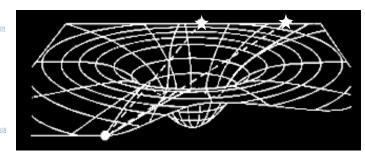
Newtonian Gravity

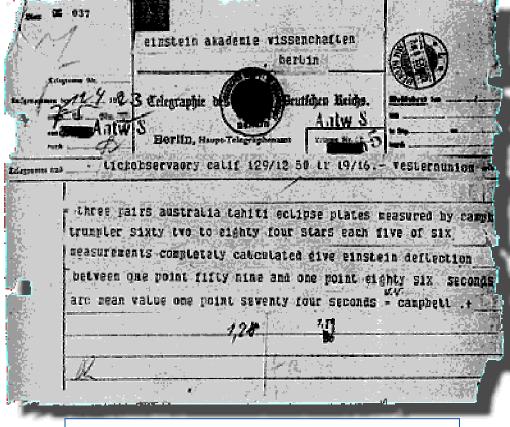
General Relativity

Sir Isaac Newton (1643-1727)

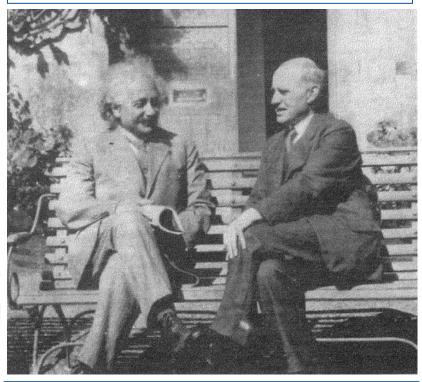
Anomalous precession of Mercury's perihelion :

- 43 arcsec/cy can not be explained by Newton's gravity
- Before publishing GR, in 1915, Einstein computed the expected perihelion precession of Mercury
 - When he got out 43 arcsec/cy a new era just began!!

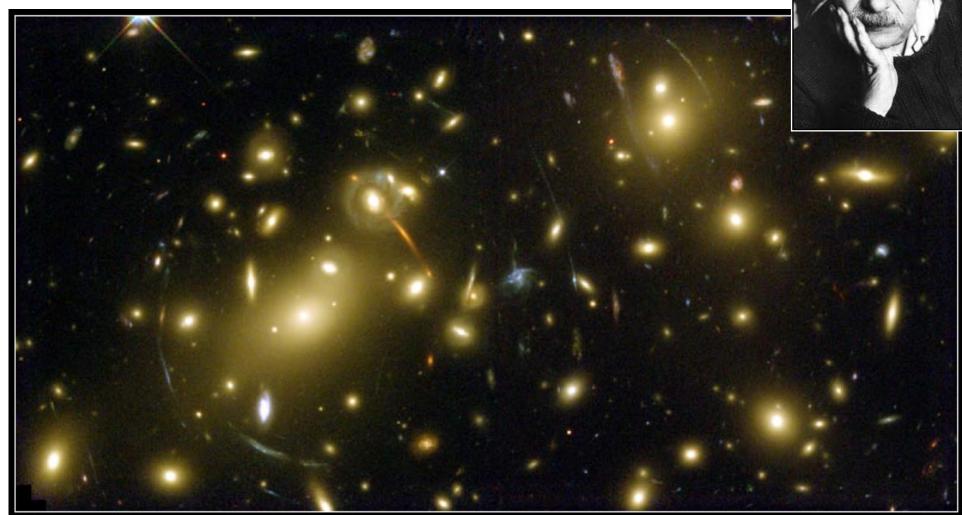

Almost in one year LeVerrier both confirmed the Newton's theory (Neptune) & cast doubt on it (Mercury's' anomaly).


Albert Einstein (1879-1955)

The First Test of General Theory of Relativity


Gravitational Deflection of Light: Solar Eclipse 1919

Eddington's telegram to Einstein, 1919


Possible outcomes in 1919:

Deflection = 0; Newton = 0.87 arcsec; Einstein = 2 x Newton = 1.75 arcsec

Einstein and Eddington, Cambridge, 1930

JPL TESTING GRAVITY IN THE SOLAR SYSTEM Gravitational Deflection of Light is a Well-Known Effect Today

HST • WFPC2

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl) • STScl-PRC00-08

Theoretical landscape of early 1970s: Competing Theories of Gravity

Newton 16	586	Poinca	ncaré 1890 Ei			in 19	12	Nor	dstrøm 1	912	Nordstrøm 19		913	
Einstein ar	nd F	okker 1	914	Eins	stein 1	1916	Wl	Thitehead 1922 Ca			artan 1923			_
Fierz and Pauli 1939 Birkhoff				1943	943 Milne 1			48 Thiry 1948		Papapetrou		954		
Papapetrou	Papapetrou 1954 Jordan 1955					ewoo	d an	id Be	ergmann	1956	Brans ar	nd D	icke	1961
Yilmaz 19	962	Whitre	ow an	nd M	orduc	h 196	5	Whi	trow and	Mor	duch 1965	5		_
Kustaanhe	eimo	and N	uotio	1967	7 De	ser ar	nd L	aure	ent 1968	Page	e and Tupp	per 1	968	
Bergmann	196	58 Nor	dtved	t 197	70 B	ollini,	, Gia	ambi	iagi and T	Fiom	no 1970	Wag	goner	: 1970
Rosen 197	'1 N	Ni 1972	Ni	1972	Hel	lings	and	Nor	dtvedt 19	972	Will and M	Nord	tved	t 1972
Ni 1973 Yilmaz 1973 Lightm					nan ai	nd Le	e 19	973	Lee, Lig	htma	n and Ni 1	.974	Ros	sen 1975
Belinfante and Swihart 1975 Le						al. 19	76	Bek	enstein 1	977	Barker 19	978	Rast	tall 1979
Coleman	in 193	82 0	Over	clook	ted (20 th c	entu	ry)							

Need Criteria for Viability

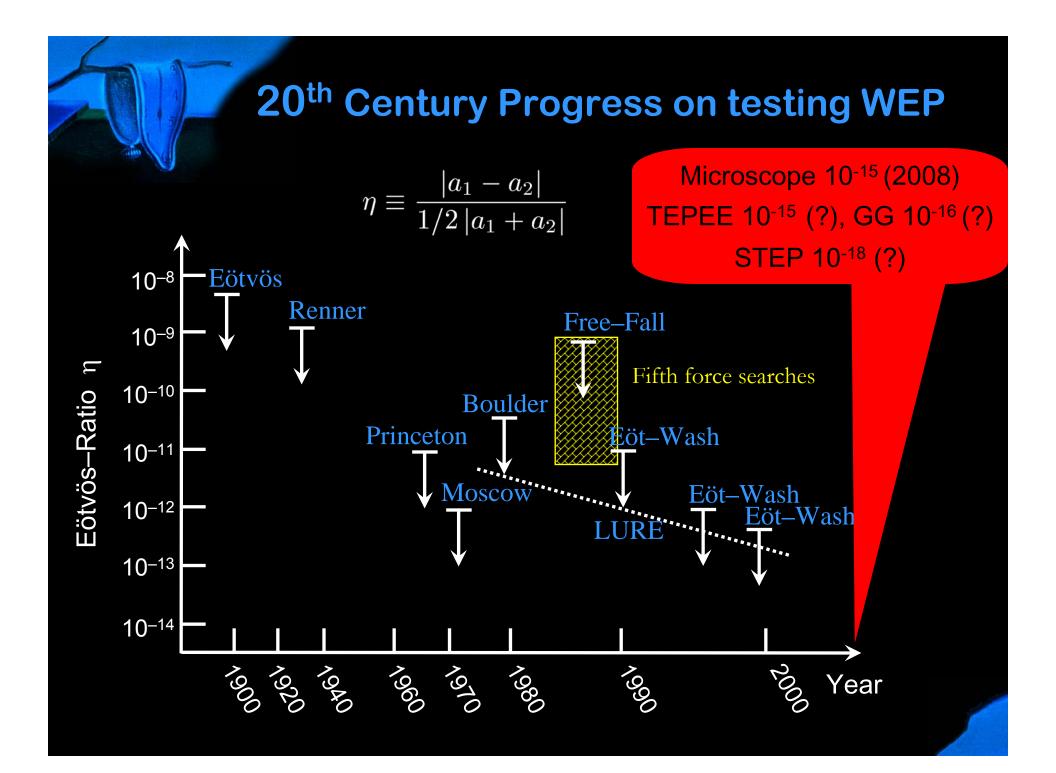
Basic conditions for a successful theory of gravity: A theory must be

- Complete
- Self-consistent
- Relativistic
- Newtonian

Theories that fail already

Newton 168	36 Po	oincar	é 189	90 I	Einste	in 19	12	Nordstrøm 1912		912	Nordstrø	m 19	13		
Einstein and	instein and Fokker 1914 E			Eins	stein 1	916	Whitehe		ead 1922 Ca		artan 1923				
Fierz and Pauli 1939 Birkho			hoff	1943	Milı	ne 1	948	Thiry 1	948	Papapetr	ou 19	954			
Papapetrou	1954	Jord	lan 1	955	Little	ewoo	d an	nd Be	ergmann	1956	Brans an	nd Di	icke	1961	
Yilmaz 196	52 V	Vhitro	w an	d Mo	orduc	h 196	5	Whitrow and Mord			duch 1965	5			
Kustaanhei	mo a	nd Nu	otio	1967	De	ser ar	nd L	Laure	nt 1968	Pag	e and Tup	per 1	968		
Bergmann 1	1968	Nord	tved	t 197	'0 B	Bollini, Giambiagi and Tiomno 1970					Wag	oner	1970		
Rosen 1971	Ni	1972	Ni 1	1972	Hel	lings	and Nordtvedt 19			972	Nord	tved	: 1972		
Ni 1973 Yilmaz 1973 Lightr					nan ar	nd Le	e 19	973	Lee, Lig	htma	n and Ni	1974	Ros	sen 197	75
Belinfante and Swihart 1975 Lee						al. 19	76	Bek	enstein 1	.977	Barker 1	978	Rast	all 197	'9
Coleman 1983 Kaluza-Klein 1932						52 C)vei	rlook	ted (20 th c	centu	ry)				

Universality of Free Fall


Test the Uniqueness of Free Fall (a.k.a. the Weak Equivalence Principle):

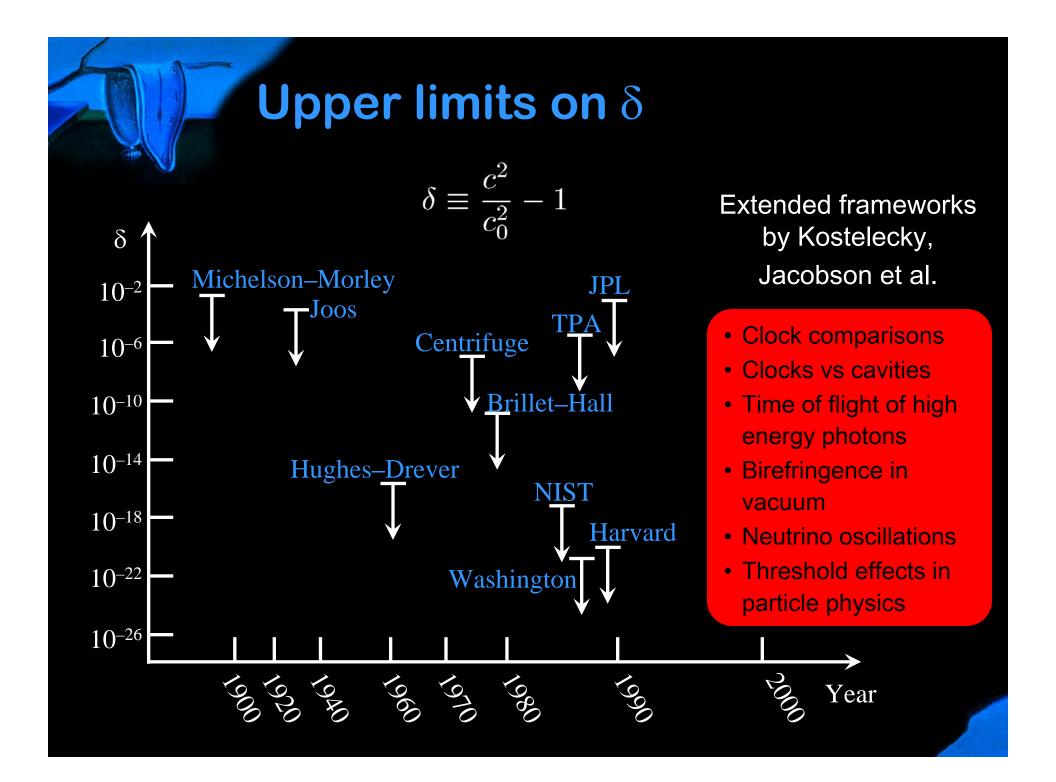
$$\vec{F} = m_i \vec{a} = m_g \vec{g}$$
$$\implies m_i = m_g$$

All bodies fall with the same acceleration

Define test parameter that signifying violation of WEP

$$\eta \equiv \frac{|a_1 - a_2|}{1/2 |a_1 + a_2|}$$

Local Lorentz Invariance


The outcome of any local non-gravitational experiment is independent of the velocity of the freely-falling reference frame in which it is performed

Well known from Special Relativity:

- Violations would mean
- Test parameter $c \neq c_0$

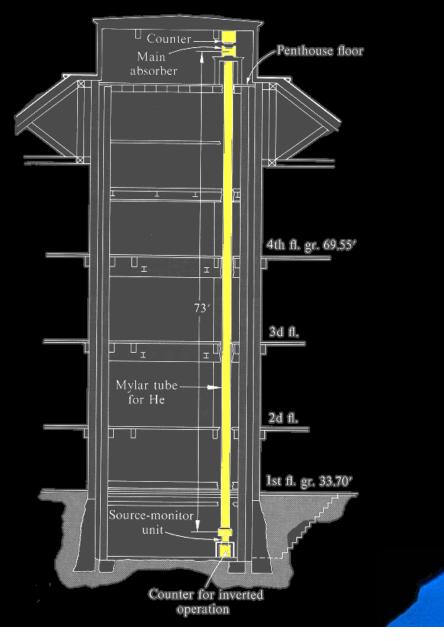
The objective is to test

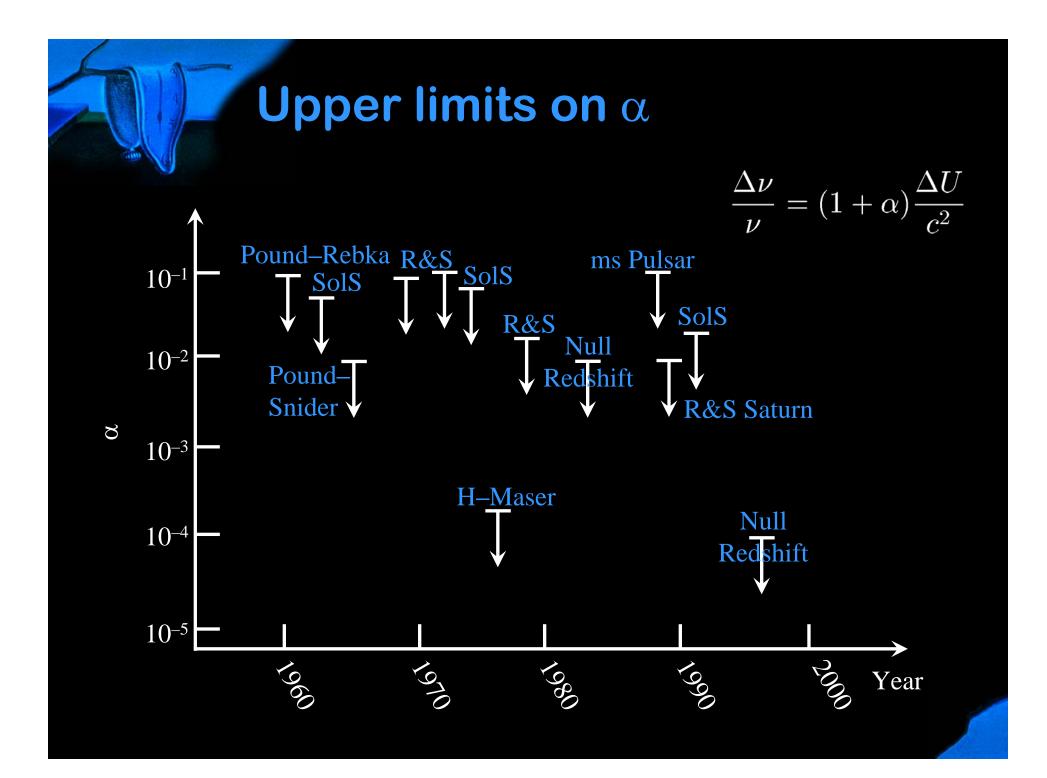
$$\delta \equiv \frac{c^2}{c_0^2} - 1$$

Local Position Invariance

The outcome of any local non-gravitational experiment is independent of where and when in the universe it is performed

Splits into


- spatial invariance
- temporal invariance


Pound–Rebka Experiments

Examine the Gravitational Redshift to test the Spatial Local Position Invariance

Compare

acceleration of local Lorentz frames with acceleration of test particles

Einstein Equivalence Principle

- Einstein Equivalence Principle
 - Uniqueness of Free Fall
 - Local Lorentz Invariance
 - Local Position Invariance
- Metric Theory: Definition
 - Space-time is endowed with a symmetric metric
 - Trajectories of freely falling bodies are geodesics of that metric

Einstein Equivalence Principle

Only Metric Theories viable

Theories that violate EEP

					Г											
Newton 1	686	6 Pc	oincar	é 18	90	Eir	nstein 19	912	Not	dstrøm 1	912	Nordstrø	m 19	13		
Einstein a	and I	Fok	ker 19	914	Eir	nste	in 1916	W	hiteh	ehead 1922 Cartai		artan 1923				
Fierz and Pauli 1939 Birkhoff						f 19	1943 Milne 1948 Thiry 1948 Pap					Papapetr	ou 19	954		
Papapetrou 1954 Jordan 1955						5 L	ittlewoo	od ar	nd Be	ergmann	1956	Brans ar	nd Di	cke	1961	
Yilmaz 1	Yilmaz 1962 Whitrow and Mc						duch 19	65	Whi	trow and	Mor	duch 1965	5			
Kustaanh	neim	o ar	nd Nu	otio	196	57	Deser a	nd I	Laure	ent 1968	Page	e and Tupp	per 1	968		
Bergman	n 19	68	Nord	tved	lt 19	970	Bollini, Giambiagi and Tiomno 1970					Wag	Wagoner 1970			
Rosen 19	71	Ni 1	1972	Ni	197	2]	Hellings	and	l Nor	dtvedt 19	972	Will and M	Nord	tved	t 1972	
Ni 1973	Yil	maz	z 1973	3 L	ight	ma	n and Le	ee 19	973	Lee, Lig	htma	n and Ni 1	974	Ros	sen 19	975
Belinfante and Swihart 1975						Lee	et al. 19	976	Bek	enstein 1	.977	Barker 19	978	Rast	tall 19	79
Coleman 1983 Kaluza-Klei					ein	1932	Ove	rlook	xed (20 th c	centu	ry)					

Strong Equivalence Principle

- Generalized Uniqueness of Free Fall: All bodies fall with the same acceleration
- Generalized Local Lorentz Invariance: All experiments are independent of the velocity of the local Lorentz frame
- Generalized Local Position Invariance
 All experiments are independent of where and when they are performed

Theories that violate GLLI

Newton 1	686	6 Pc	oincar	é 18	90	Ein	stein 1	912	Nor	dstrøm 1	912	Nordstrøi	n 1913	3	
Einstein a	and	Fok	ker 19	914	Ein	ste	in 1916	W	hiteh	lead 1922	2 Ca	artan 1923			
Fierz and Pauli 1939 Birkho						19	43 Mi	lne 1	1948	Thiry 1	948	Papapetro	ou 195	4	
Papapetrou 1954 Jordan 195					955	L	ittlewoo	od ai	nd Be	ergmann	1956	Brans an	d Dicl	ke 1961	
Yilmaz 1	962	W	hitro	w ar	nd M	lord	luch 19	65	Whi	trow and	Mor	duch 1965			
Kustaanh	neim	io ar	nd Nu	otio	196'	7	Deser a	and I	Laure	ent 1968	Page	e and Tupp	er 196	58	
Bergman	n 19	68	Nord	tved	lt 19'	970 Bollini, Giambiagi and Tiomno 1970 Wagone						ner 197	0		
Rosen 19	71	Ni	1972	Ni	1972	2 I	Hellings	s and	l Nor	dtvedt 19	972	Will and N	lordtve	edt 197	2
Ni 1973 Yilmaz 1973 Ligh					ightr	nar	n and L	ee 1	973	Lee, Lig	htma	n and Ni 1	974 F	Rosen 1	975
Belinfante and Swihart 1975					75 L	Lee	et al. 1	976	Bek	enstein 1	977	Barker 19	978 R	astall 1	979
Coleman 1983 Kaluza-K					-Kle	in	1932	Ove	rlook	xed (20 th o	centu	ry)			

Theories that violate GLPI

Newton 1	1686	Po	incar	é 189	90	Einstein 19	12	Nor	dstrøm 19	912	Nordstrør		
Einstein a	and F	Fokk	xer 19	914	Eins	stein 1916	W	hiteh	ead 1922	O22 Cartan 19			
Fierz and Pauli 1939 Birkho						1943 Mil	ne 1	1948	Thiry 19	948	Papapetro	ou 1954	4
Papapetrou 1954 Jordan 195					955	Littlewoo	d ar	nd Be	ergmann 1	956	Brans an	d Dick	te 1961
Yilmaz 1	962	W	hitrov	w an	d Mo	orduch 196	55	Whi	trow and I	Mor	duch 1965		
Kustaanheimo and Nuotio 1967 Deser and Lau								Laure	nt 1968	Page	e and Tupp	er 196	8
Bergman	n 196	58 2	Nord	tved	t 197	70 Bollini	, Gi	ambi	agi and T	iom	no 1970	Wagon	er 1970
Rosen 19	71 I	Ni 1	972	Ni 1	1972	Hellings	anc	l Nor	dtvedt 19	72	Will and N	lordtve	edt 1972
Ni 1973	Yilr	naz	1973	Li	ghtn	nan and Le	e 19	973	Lee, Ligh	itma	n and Ni 1	974 R	losen 1975
Belinfante and Swihart 1975					5 L	ee et al. 19	76	Bek	enstein 19	977	Barker 19	78 Ra	astall 1979
Coleman 1983 Kaluza-K					Klei	in 1932 C	Dve	rlook	ted (20 th ce	entu	cy)		

Parameterized Post-Newtonian Formalism (PPN) (Will & Nordtvedt, 1972)

- Solar system is the main arena to test weak gravity:
 - Expand the metrics
 - Identify various potentials
 - They have 10 PPN parameters in front

$$\gamma, \beta, \xi, \alpha_1, \alpha_2, \alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$$

- Calculate those parameters
- Compare with experiments
- [2006: A need for Cosmological PPN?]

PPN Parameters: Their Meaning

Parameter	What it measures, relative to general relativity	Value in GR	Value in scalar tensor theory	Value in semi- conservative theories
γ	How much space curvature produced by unit mass?	1	(1+ ω)/(2 +ω)	γ
β	How "non-linear" is gravity?	1	1 + A	β
ц Ц	Preferred-location effects?	0	0	Ę
α_1		0	0	α_1
$lpha_2$	Preferred-frame effects?	0	0	α_2
$lpha_3$		0	0	0
ζ1		0	0	0
ζ_2	la momentum concerved?	0	0	0
53	Is momentum conserved?	0	0	0
54		0	0	0

Theories that predict $\gamma = 0$ fail

Newton 2	1686 Po	oincaré	1890	Einstein 19	012 Not	dstrøm 191	2 Nordstr	øm 1913		
Einstein a	and Fok	ker 191	4 Ein	stein 1916	Whiteh	nead 1922	Cartan 192	3		
Fierz and	Pauli 1	939 B	irkhoff	1943 Mil	ne 1948	Thiry 194	8 Papapet	rou 1954		
Papapetro	ou 1954	Jorda	n 1955	Littlewoo	d and Be	ergmann 19	56 Brans a	and Dicke	1961	
Yilmaz 1962 Whitrow and Morduch 1965 Whitrow and Morduch 1965										
Kustaanł	Kustaanheimo and Nuotio 1967 Deser and Laurent 1968 Page and Tupper 1968									
Bergman	n 1968	Nordty	vedt 197	70 Bollini	, Giamb	iagi and Tic	omno 1970	Wagone	r 1970	
Rosen 19	71 Ni	1972 <mark>I</mark>	Ni 1972	Hellings	and Nor	dtvedt 1972	2 Will and	Nordtved	lt 1972	
Ni 1973 Yilmaz 1973 Lightman and Lee 1973 Lee, Lightman and Ni 1974 Rosen 1975										
Belinfant	Belinfante and Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979									
Coleman	n 1983	Kalu	ıza-Kle	in 1932 (Overlook	ted (20 th cen	tury)			

Unlikely Scalar-Tensor Theories

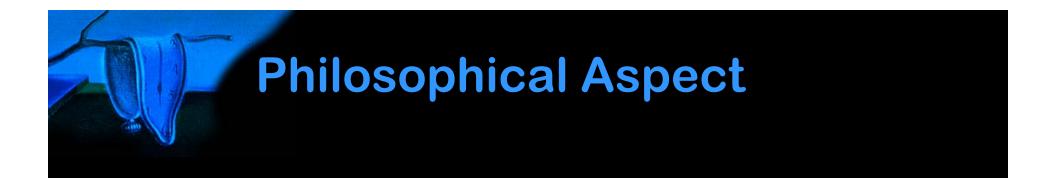
Newton 1686 Poincaré 1890 Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein and Fokker 1914 Einstein 1916 Whitehead 1922 Cartan 1923 Fierz and Pauli 1939 Birkhoff 1943 Milne 1948 Thiry 1948 Papapetrou 1954 Papapetrou 1954 Jordan 1955 Littlewood and Bergmann 1956 Brans and Dicke 1961 Yilmaz 1962 Whitrow and Morduch 1965 Whitrow and Morduch 1965 Kustaanheimo and Nuotio 1967 Deser and Laurent 1968 Page and Tupper 1968 Bergmann 1968 Nordtvedt 1970 Bollini, Giambiagi and Tiomno 1970 Wagoner 1970 Hellings and Nordtvedt 1972 Will and Nordtvedt 1972 Rosen 1971 Ni 1972 Ni 1972 Yilmaz 1973 Lightman and Lee 1973 Lee, Lightman and Ni 1974 Rosen 1975 Ni 1973 Belinfante and Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979 Kaluza-Klein 1932 Overlooked (20thcentury) Coleman 1983

Theories that fail to explain planetary perihelion advance

Newton 1686 Poincaré 1890 Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein and Fokker 1914 Einstein 1916 Whitehead 1922 Cartan 1923 Fierz and Pauli 1939 Birkhoff 1943 Milne 1948 Thiry 1948 Papapetrou 1954 Papapetrou 1954 Jordan 1955 Littlewood and Bergmann 1956 Brans and Dicke 1961 Yilmaz 1962 Whitrow and Morduch 1965 Whitrow and Morduch 1965 Kustaanheimo and Nuotio 1967 Deser and Laurent 1968 Page and Tupper 1968 Bergmann 1968 Nordtvedt 1970 Bollini, Giambiagi and Tiomno 1970 Wagoner 1970 Rosen 1971 Ni 1972 Ni 1972 Hellings and Nordtvedt 1972 Will and Nordtvedt 1972 Yilmaz 1973 | Lightman and Lee 1973 | Lee, Lightman and Ni 1974 | Rosen 1975 Ni 1973 Belinfante and Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979 Kaluza-Klein 1932 Overlooked (20thcentury) Coleman 1983

Some theories resist to fail

Newton 1686 Poincaré 1890 Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein and Fokker 1914 Einstein 1916 Whitehead 1922 Cartan 1923 Fierz and Pauli 1939 Birkhoff 1943 Milne 1948 Thiry 1948 Papapetrou 1954 Papapetrou 1954 Jordan 1955 Littlewood and Bergmann 1956 Brans and Dicke 1961 Yilmaz 1962 Whitrow and Morduch 1965 Whitrow and Morduch 1965 Kustaanheimo and Nuotio 1967 Deser and Laurent 1968 Page and Tupper 1968 Bergmann 1968 Nordtvedt 1970 Bollini, Giambiagi and Tiomno 1970 Wagoner 1970 Rosen 1971 Ni 1972 Ni 1972 Hellings and Nordtvedt 1972 Will and Nordtvedt 1972 Ni 1973 Yilmaz 1973 Lightman and Lee 1973 Lee, Lightman and Ni 1974 Rosen 1975 Belinfante and Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979 Kaluza-Klein 1932 Coleman 1983 Overlooked (20thcentury)

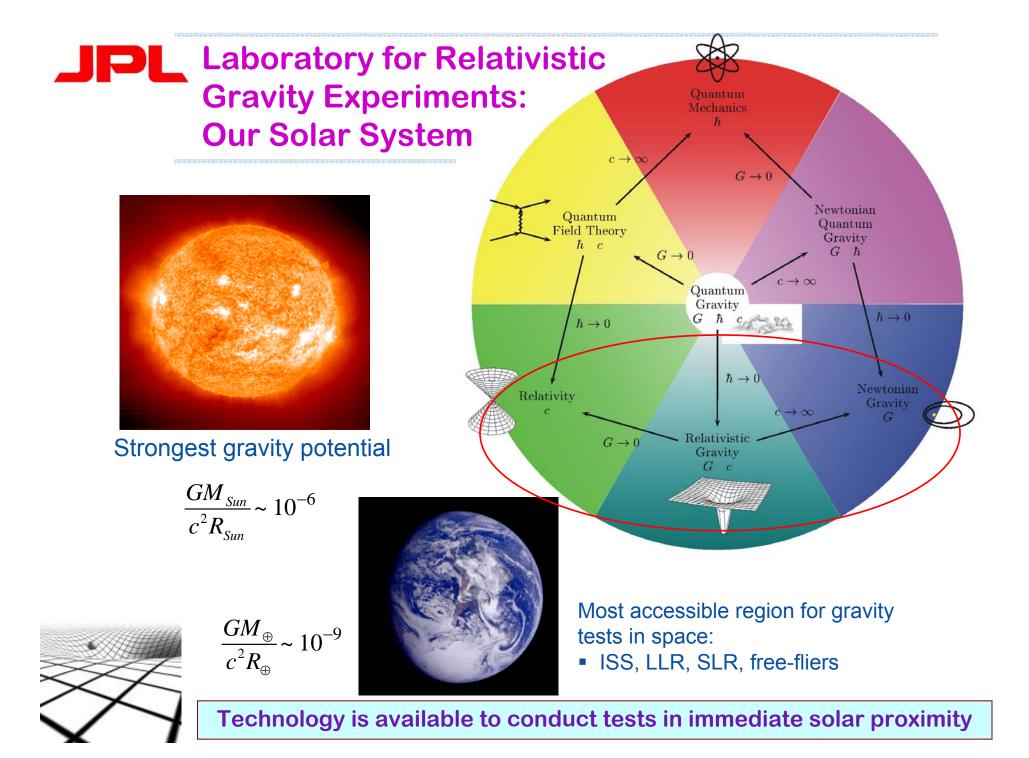

Theories that fail strong field tests – GW & pulsars

Newton 1686 Poincaré 1890 Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein and Fokker 1914 Einstein 1916 Whitehead 1922 Cartan 1923 Fierz and Pauli 1939 Birkhoff 1943 Milne 1948 Thiry 1948 Papapetrou 1954 Papapetrou 1954 Jordan 1955 Littlewood and Bergmann 1956 Brans and Dicke 1961 Yilmaz 1962 Whitrow and Morduch 1965 Whitrow and Morduch 1965 Kustaanheimo and Nuotio 1967 Deser and Laurent 1968 Page and Tupper 1968 Bergmann 1968 Nordtvedt 1970 Bollini, Giambiagi and Tiomno 1970 Wagoner 1970 Rosen 1971 Ni 1972 Ni 1972 Hellings and Nordtvedt 1972 Will and Nordtvedt 1972 Yilmaz 1973 Lightman and Lee 1973 Lee, Lightman and Ni 1974 Ni 1973 Rosen 1975 Belinfante and Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979 Kaluza-Klein 1932 Overlooked (20thcentury) Coleman 1983

Do we really need Aesthetics?

"[...] Unfortunately, any finite number of effects can be fitted by a sufficiently complicated theory. [...] Aesthetic or philosophical motives will therefore continue to play a part in the widespread faith in Einstein's theory, even if all tests verify its predictions."

– Malcolm MacCallum, 1976



"Among all bodies of physical law none has ever been found that is simpler and more beautiful than Einstein's geometric theory of gravity"

– Misner, Thorne and Wheeler, 1973

Conclusion for 20th Century Tests

Newton 1686 Poincaré 1890 Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein and Fokker 1914 Einstein 1916 Whitehead 1922 Cartan 1923 Fierz and Pauli 1939 Birkhoff 1943 Milne 1948 Thiry 1948 Papapetrou 1954 Papapetrou 1954 Jordan 1955 Littlewood and Bergmann 1956 Brans and Dicke 1961 Yilmaz 1962 Whitrow and Morduch 1965 Whitrow and Morduch 1965 Kustaanheimo and Nuotio 1967 Deser and Laurent 1968 Page and Tupper 1968 Bergmann 1968 Nordtvedt 1970 Bollini, Giambiagi and Tiomno 1970 Wagoner 1970 Rosen 1971 Ni 1972 Ni 1972 Hellings and Nordtvedt 1972 Will and Nordtvedt 1972 Ni 1973 Yilmaz 1973 Lightman and Lee 1973 Lee, Lightman and Ni 1974 Rosen 1975 Belinfante and Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979 Coleman 1983 Kaluza-Klein 1932 Overlooked (20thcentury)

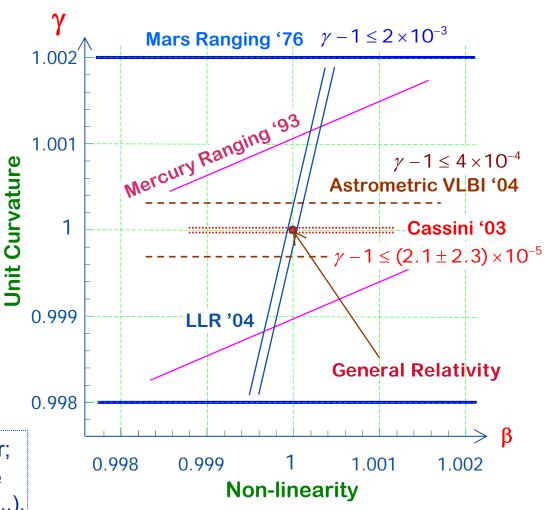
TESTING GRAVITY IN THE SOLAR SYSTEM 35 Years of Solar System Gravity Tests

Techniques for Gravity Tests:

Radar Ranging:

- Planets: Mercury, Venus, Mars
- s/c: Mariners, Pioneers, Vikings, Cassini, Mars Global Surveyor, Mars Orbiter
- VLBI, GPS, etc.

Laser:


• SLR, LLR, interplanetary, etc.

Dedicated Gravity Missions:

- LLR (1969 on-going!!)
- GP-A, '76; LAGEOS, '76,'92;
 GP-B, '07; LISA, 2015

New Engineering Discipline – Applied General Relativity:

- Daily life: GPS, geodesy, time transfer;
- Precision measurements: deep-space navigation & astrometry (SIM, GAIA,....).

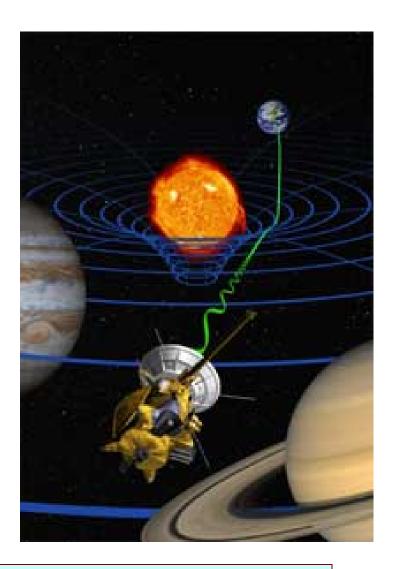
A factor of 100 in 35 years is impressive, but is not enough for the near future!

Current (2006) Bounds on the PPN Parameters

	Parameter	Effect or Experiment	Bound	Remarks			
	. 1	Time delay	2.3 X 10 ⁻⁵	Cassini tracking			
	γ - 1	Light deflection	4 X 10 ⁻⁴	VLBI			
		Perihelion shift	3 X 10 ⁻³	$J_2 = 2 \times 10^{-7}$ from helioseismology			
	B P	Nordtvedt effect	5 X 10 ⁻⁴	LLR, $\eta < 3 \times 10^{-4}$ assumed η^*			
	A (2011) 1	.00	10 ⁻³	gravimeters			
L	ATOR 10-9		10-4	LLR BepiColombo (2012)			
	α_1	Orbit polarization	2 X 10 ⁻⁴	J2317: $J_2 \sim 10^{-8}$			
	α_2	Spin precessio APOLLO	2×10^{-5}	Sun axis' alignment with conput			
	α_3	Self-acceleration.	5 × 10°	Pulsar spindown statistics			
	ζ_1		2 X 10 ⁻²	Combined PPN bounds			
	ζ_2	Binary acceleration	4 X 10 ⁻⁵	PSR 1913+16			
	ζ_3	Newton's 3rd law	10 ⁻⁸	Lunar acceleration			
	ζ_4			Not independent			

 $η = 4β-y-3-10\xi/3-α_1+2α_2/3-2\zeta_1/3-\zeta_2/3$

Bound on scalar-tensor gravity: $\omega > 40,000$



Cassini Conjunction Experiment 2002:

- Spacecraft--Earth separation > 1 billion km
- Doppler/Range: X~7.14GHz & Ka~34.1GHz
- Result: $\gamma = 1 + (2.1 \pm 2.3) \times 10^{-5}$

Possible with Existing Technologies?!

- VLBI [current γ = 4 ×10⁻⁴]: in 5 years ~5 ×10⁻⁵:
 - # of observations (1.6M to 16M \rightarrow factor of 3)
- μ -wave ranging to a Lander on Mars $\sim 6 \times 10^{-6}$
- Optical astrometry [current γ = 3 ×10⁻³]: SIM & GAIA ~1 ×10⁻⁶ (2015/16?)
- LLR [current η = 4 ×10⁻⁴]: in 5 years ~3 ×10⁻⁵:
 - mm accuracies [APOLLO] & modeling efforts
- Tests of WEP [< 2 ×10⁻¹³]:
 - Microscope [2009, France, ESA] ~ 10^{-15}

To explore accuracies better than 10⁻⁶, a dedicated mission is needed

5 years later – they are back!

Newton 1686 Poincaré 1890 Einstein 1912 Nordstrøm 1912 Nordstrøm 1913 Einstein and Fokker 1914 Einstein 1916 Whitehead 1922 Cartan 1923 Fierz and Pauli 1939 Birkhoff 1943 Milne 1948 Thiry 1948 Papapetrou 1954 Papapetrou 1954 Jordan 1955 Littlewood and Bergmann 1956 Brans and Dicke 1961 Yilmaz 1962 Whitrow and Morduch 1965 Whitrow and Morduch 1965 Kustaanheimo and Nuotio 1967 Deser and Laurent 1968 Page and Tupper 1968 Bergmann 1968 Nordtvedt 1970 Bollini, Giambiagi and Tiomno 1970 Wagoner 1970 Rosen 1971 Ni 1972 Ni 1972 Hellings and Nordtvedt 1972 Will and Nordtvedt 1972 Ni 1973 Yilmaz 1973 Lightman and Lee 1973 Lee, Lightman and Ni 1974 Rosen 1975 Belinfante and Swihart 1975 Lee et al. 1976 Bekenstein 1977 Barker 1978 Rastall 1979 Coleman 1983 Kaluza-Klein 1932 Overlooked (20thcentury)

Bekenstein 2004	Moffat 2005	DGP 2	003	Mul	tiple GR modifications (21stc	entury)
Generic Scalar-Te	Strings theo		ory?	Multiple anomalies		

... There are Three Dark Clouds over General Relativity...:

Dark Energy, Dark Matter, and The Pioneer Anomaly

Prof. Dr. Jürgen Ehlers MPI für Gravitationsphysik (Albert-Einstein-Inst.), Golm bei Potsdam, Physics Colloquium at the University of Bremen February 10, 2005

... There are Three Dark Clouds over General Relativity...:

Dark Energy, Dark Matter, and other Anomalies...

Dr. Slava G. Turyshev JPL, Pasadena, CA Alternative Gravities & Dark Matter Workshop Royal Observatory, Edinburgh, Scotland, 20-22 April 2006

Gravity? A provocative list

cosmic acceleration dark energy $\frac{\ddot{a}}{a}/H \approx 3.3 \times 10^{-10} \,\mathrm{m/s^2}$

galaxy rotation curves $\label{eq:alpha} \mbox{dark matter} \ a_0 \sim 10^{-10}\,\mbox{m/s}^2$

Pioneer anomaly

$$\vec{a} = -(8.74 \pm 1.33) \times 10^{-10} \, \hat{r} \, \mathrm{m/s^2}$$

Anderson et al, PRL 81 (1998) 2858

drift of Astronomical Unit

 $\frac{d}{dt}AU = 15 \pm 4 \text{ m/cy}$

Krasinsky & Brumberg, Cel. Mech. & Dyn. Astro. 90 (2004) 267

$$c\dot{AU}/AU \approx 10^{-11} \,\mathrm{m/s^2}$$

drift of Moon from Earth $\frac{d}{dt}$ R \approx 3.8 m/cy

The Study of the Anomalous Acceleration of Pioneers 10 & 11

John D. Anderson, Slava G. Turyshev, Eunice L. La

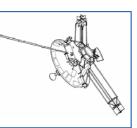
Jet Propulsion Laboratory, California Institute of Technology

Michael Martin Nieto

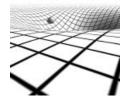
Los Alamos National Laboratory, U of California

Pioneer Collaboration: John D. Anderson, Philip A. Laing, Eunice L. Lau, Anthony S. Liu[†], Michael Martin Nieto, Slava G. Turyshev

THE STUDY OF THE PIONEER ANOMALY Conclusions & Outline:

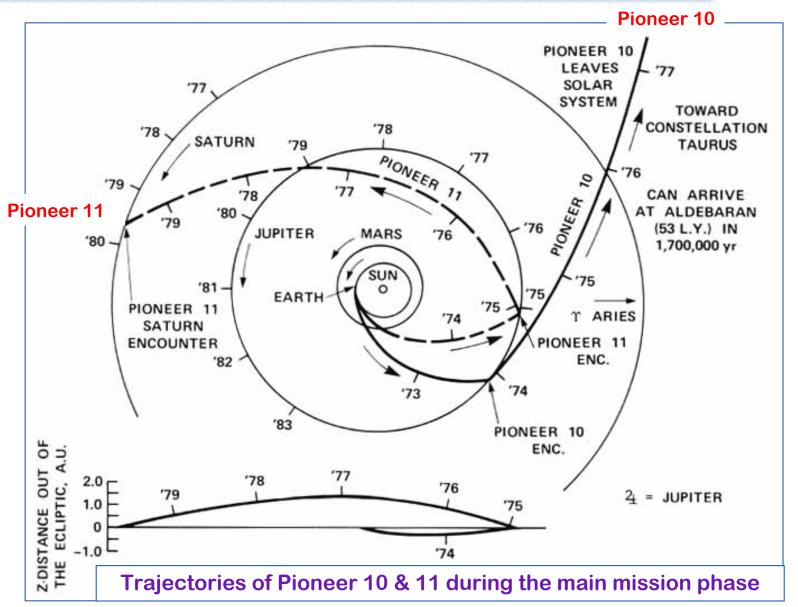

 $a_P = (8.74 \pm 1.33) \times 10^{-10} \text{ m/s}^2$

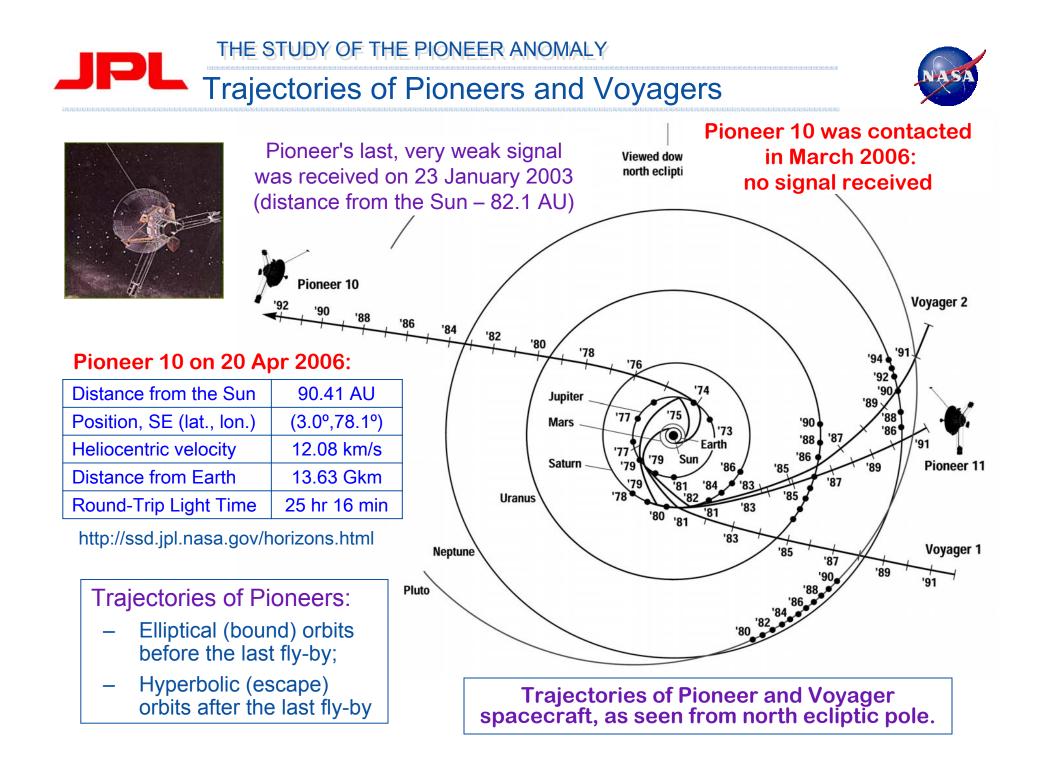
- A line-of-sight constant acceleration toward the Sun:
- We find no mechanism or theory that explains the anomaly
- Most plausible cause is systematics, yet to be demonstrated


Phys. Rev. D 65 (2002) 082004, gr-qc/0104064

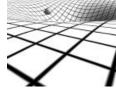
Possible Origin?

- Conventional Physics [not yet understood]:
 - Gas leaks, thermal mechanism, drag force, etc...




- New Physics [many proposals exist, some interesting]
- A "win-win" situation both possibilities are important:
 - CONVENTIONAL explanation: i) confirmation of the Newton's 1/r² gravity law in the outer solar system, ii) improvement of spacecraft engineering for precise navigation & attitude control, or
 - NEW physics: would be truly remarkable...

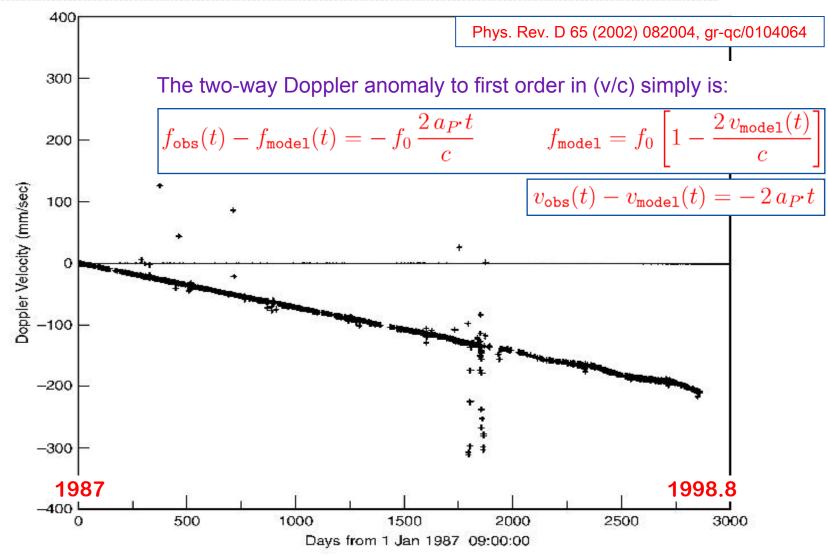
THE STUDY OF THE PIONEER ANOMALY Detection of the Effect and Earlier Studies



- 1979: search for unmodeled accelerations w/ Pioneers began:
 - Motivation: Planet X; initiated when Pioneer 10 was at 20 AU;
 - Solar-radiation pressure <u>away</u> from the Sun became $< 5 \times 10^{-10}$ m/s²
- 1980: navigational anomaly first detected at JPL:
 - The biggest systematic error in the acceleration residuals a constant bias of $(8 \pm 3) \times 10^{-10} \text{ m/s}^2$ directed <u>towards</u> the Sun
- Initial JPL-ODP analysis in 1990-95: PRL 81(1998) 2858-2861, gr-qc/9808081
 - $(8.09\pm0.20)\times10^{-10}\ m/s^2~$ for Pioneer 10
 - $(8.56 \pm 0.15) \times 10^{-10} \text{ m/s}^2$ for Pioneer 11
 - NO magnitude variation with distance over a range of 40 to 70 AU
 - The error is from a batch-sequential & filter-smoothing algorithm
 - An Error in JPL's ODP? Numerous internal checks at JPL
 - NASA Grant to The Aerospace Corporation: 1996-1998

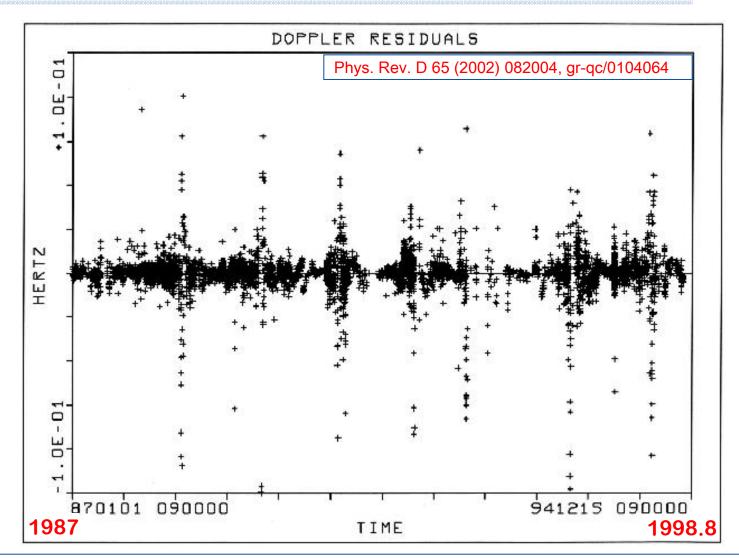
Data used for the Analysis (1996-1998):

- **Pioneer 10**: 11.5 years; distance = $40-70.5 \text{ AU} \Rightarrow 20,055 \text{ data points}$
- Pioneer 11: 3.75 years; distance = $22.4-31.7 \text{ AU} \Rightarrow 19,198$ data points



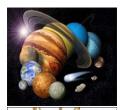
THE STUDY OF THE PIONEER ANOMALY

The Observed Anomalous Doppler Drift



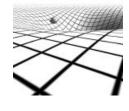
The two-way Doppler residuals (observed Doppler velocity minus modeled Doppler velocity) for Pioneer 10 vs time [1 Hz is equivalent to 65 mm/s velocity].

THE STUDY OF THE PIONEER ANOMALY The Pioneer Anomaly: Quality of Data Fit



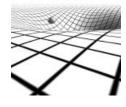
Adding only one more parameter to the model – a constant radial acceleration – led to residuals distribution \sim zero Doppler velocity with a systematic variation \sim 3.0 mm/s. Quality of the fit is determined by ratio of residuals to the downlink carrier frequency, <u>f</u>₀ \approx 2.29 GHz.

THE STUDY OF THE PIONEER ANOMALY Modeling of Spacecraft Motion



- Relativistic eq.m. for celestial bodies are correct to (v/c)⁴:
 - Relativistic gravitational accelerations (EIH model) include: Sun, Moon, 9 planets are point masses in isotropic, PPN, N-body metric;
 - Newtonian gravity from large asteroids; terrestrial, lunar figure effects; Earth tides; lunar physical librations.
- Relativistic models for light propagation are correct to (v/c)²
- Model accounts for many sources of non-grav. forces, including:
 - Solar radiation and wind pressure; the interplanetary media;
 - Attitude-control propulsive maneuvers and propellant (gas) leakage from the propulsion system;
 - Torques produced by above mentioned forces;
 - DSN antennae contributions to the spacecraft radio tracking data.
- Orbit determination procedure, includes:
 - Models of precession, nutation, sidereal rotation, polar motion, tidal effects, and tectonic plates drift;
 - Model values of the tidal deceleration, non-uniformity of rotation, polar motion, Love numbers, and Chandler wobble are obtained observationally via LLR, SLR and VLBI (from ICRF).

Focus of the 1995-2002 Analysis

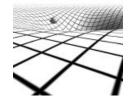


- On-board systematic & other hardware-related mechanisms:
 - Precessional attitude control maneuvers and associated "gas leaks"
 - Nominal thermal radiation due to ²³⁸Pu decay [half life 87.75 years]
 - Heat rejection mechanisms from within the spacecraft
 - Hardware problems at the DSN tracking stations
- Examples of the external effects (used GLL, ULY, and Cassini):
 - Solar radiation pressure, solar wind, interplanetary medium, dust
 - Viscous drag force due to mass distribution in the outer solar system
 - Gravity from the Kuiper belt; gravity from the Galaxy
 - Gravity from Dark Matter distributed in halo around the solar system
 - Errors in the planetary ephemeris, in the Earth's Orientation, precession, polar motion, and nutation parameters
- Phenomenological time models:
 - Drifting clocks, quadratic time augmentation, uniform carrier frequency drift, effect due to finite speed of gravity, and many others
- All the above were rejected as explanations

Most of the systematics are time or/and space dependent!

THE STUDY OF THE PIONEER ANOMALY

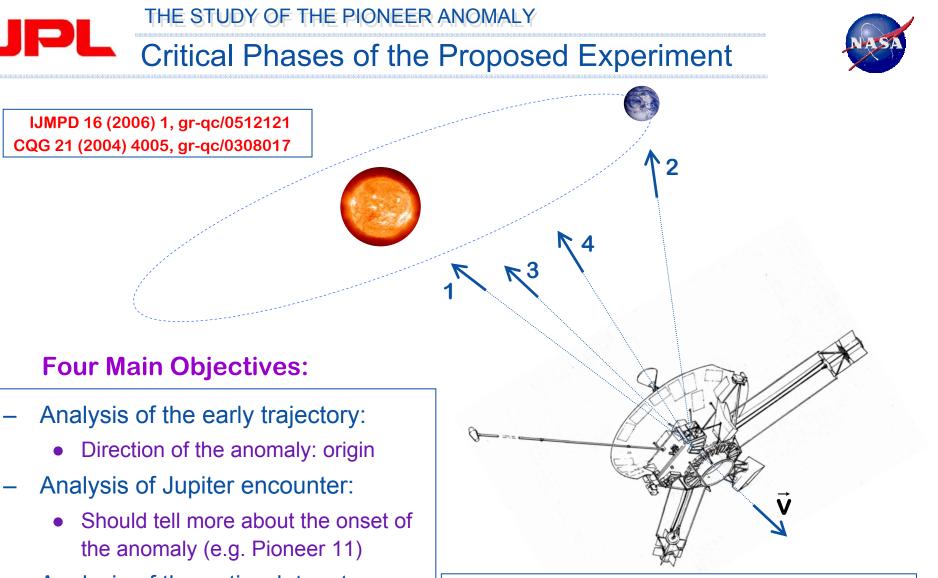
Recent Pioneer Doppler Data Recovery Effort



Data used for the Analysis (1996-1998):

- Pioneer 10: 11.5 years; distance = $40-70.5 \text{ AU} \Rightarrow 20,055 \text{ data points}$
- Pioneer 11: 3.75 years; distance = $22.4-31.7 \text{ AU} \Rightarrow 19,198$ data points

Pioneer 10/11 Doppler Data available (April 2006):


- Pioneer 10:
 - 1973-2002: ~30 years
 - Distance range: 4-87 AU
 - Jupiter encounter
 - ~95,000 data points, ~20GB
 - Maneuvers, spin, initial cond.
 - All telemetry is available

- Pioneer 11:
 - 1974-1994: ~ 20 years
 - Distance range: 1–33 AU
 - Jupiter & Saturn encounters
 - ~65,000 data points, ~<u>15GB</u>
 - Maneuvers, spin, initial cond.
 - All telemetry is available

Planning for the upcoming data analysis:

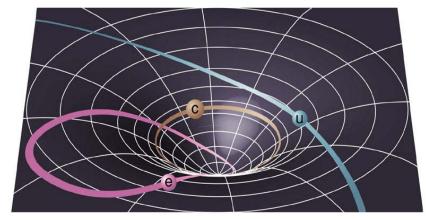
- -After initial certification at JPL, both datasets will be made available
- -NASA funding is expected in a month critical for the effort;
- -The Planetary Society good but insufficient for serious work
- -ZARM, Germany: received funding, started analysis of old data
- -French group funded by CNES is also planning for analysis

Upcoming Pioneer data analysis is planned as an international effort

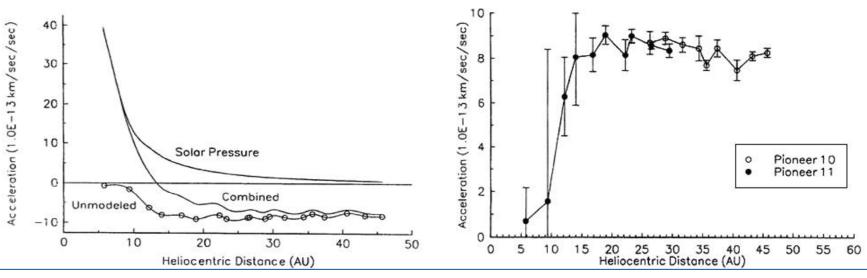
- Analysis of the entire dataset:
 - Temporal evolution of the anomaly
- Focus on on-board systematics:
 - Thermal modeling using telemetry

- Towards the Sun: gravitational models?
- Towards the Earth: frequency standards?
- Along the velocity vector: drag or inertia?
- Along the spin axis: internal systematics?

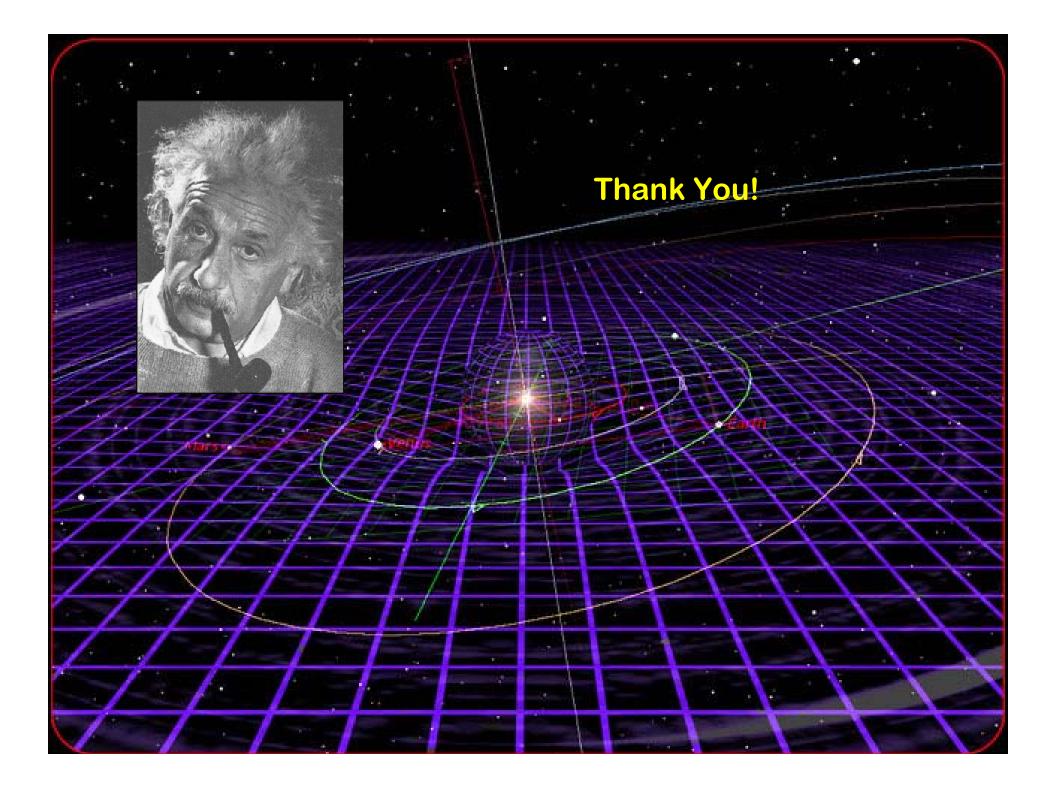
THE STUDY OF THE PIONEER ANOMALY Difference Between Bound & Un-Bound Orbits?


- Navigational <u>Anomalies</u> during Earth fly-byes were observed with multiple spacecraft:
 - Galileo: #1 on 10/8/1990 @ altitude of ~960 km;
 #2 on 12/8/1992 @ altitude of ~305 km;
 - NEAR: 01/22/1998 @ altitude of ~550 km;
 - Cassini: 08/19/1999 @ altitude of ~1,171 km;
 - Stardust: 01/15/2001 @ altitude of ~6,000 km;
 - Rosetta: 03/04/2005 @ altitude of ~1,900 km.
- Are they relevant to the Pioneer anomaly?

ACCELERATIONS ON PIONEER 10 AND 11


Positive Along Sun-Spacecraft Line

c circular orbit


- e elliptical orbit
- u unbound orbit

UNMODELED ACCELERATIONS ON PIONEER 10 AND 11 Acceleration Directed Toward the Sun

A plot of early unmodeled accelerations of Pioneer 10 (1981–1989), Pioneer 11 (1977–1989)

