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Gravitational Dynamics: Part II

Non-Equilibrium systems

AS4021, Part II 2

Lec12: Growth of a Black Hole
by capturing objects in Loss Cone

• A small BH on orbit with pericentre rp<Rbh is lost
(as a whole) in the bigger BH.
– The final process is at relativistic speed. Newtonian

theory is not adequate

• (Nearly radial) orbits with angular momentum
J<Jlc =2*c*Rbh =4GMbh/c enters `loss cone` (lc)

• When two BHs merger, the new BH has a mass
somewhat less than the sum, due to gravitational
radiation.
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Size and Density of a BH

• A black hole has a finite (schwarzschild)
radius Rbh=2 G Mbh/c2 ~ 2au (Mbh/108Msun)
– verify this!  What is the mass of 1cm BH?

• A BH has a density (3/4Pi) Mbh/Rbh
3, hence

smallest holes are densest.
– Compare density of 108Msun BH with Sun (or

water) and a giant star (10Rsun).
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Adiabatic Compression due to
growing BH

• A star circulating a BH at radius r has
• a velocity v=(GMbh/r)1/2,
• an angular momentum J = r v =(GMbh r)1/2,
• As BH grows, Potential and Orbital Energy

E changes with time.
• But J conserved (no torque!), still circular!
• So Ji = (GMi ri)1/2  =Jf =(GMf rf )1/2

• Shrink rf/ri = Mi/Mf < 1, orbit compressed!
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Boundary of Star Cluster

• Limitted by tide of
Dark-Matter-rich
Milky Way
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Tidal Stripping

•  TIDAL RADIUS: Radius within which a particle
is bound to the satellite rather than the host
galaxy.

• Consider a satellite (mass ms ) moving in a
spherical potential φg (R) made from a host galaxy
(mass M).
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If satellite plunges in radially
• the condition for a particle to be bound to the

satellite ms rather than the host galaxy M is:
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Instantaneous Tidal radius

• Generally,

• fudge factor k varies from 1 to 4
depending on definitions.

• rt is smallest at pericentre Rp where R is
smallest.

• rt shrinks as a satellite losses mass m.
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The meaning of tidal radius (k=1)

• Particle Bound to satellite if the mean
densities

• The less dense part of the satellite is torn
out of the system, into tidal tails.
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Short question

• Recalculate the instantaneous Roche Lobe
for satellite on radial orbit, but assume
Host galaxy potential Φ(R)= V0

2 ln(R)
Satellite self-gravity potential φ(r)= v0

2 ln(r),
where v0,V0 are constants.

– Show M= V0
2 R/G, m = v0

2 r/G,
– Hence Show rt/R =  cst v0/V0 ,  cst =k1/2
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Short questions

• Turn the Sun’s velocity direction (keep amplitude)
such that the Sun can fall into the BH at Galactic
Centre.  How accurate must the aiming be in term
of angles in arcsec?  Find input values from speed
of the Sun, BH mass and distances from literature.

• Consider a giant star (of 100solar radii, 1 solar
mass) on circular orbit of 0.1pc around the BH,
how big is its tidal radius in terms of solar radius?
The star will be drawn closer to the BH as it
grows.  Say BH becomes 1000 as massive as now,
what is the new tidal radius in solar radius?
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Lec 13: rotating potential of satellite-host
• Consider a satellite orbiting a host galaxy

–  Usual energy E and J  NOT conserved.
• The frame (x,y,z), in which Φ is static,

rotates at angular velocity Ωb = Ωb ez

• Effective potential & EoM in rotating frame:

• Prove JACOBI’S ENERGY conserved
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Roche Lobe of Satellite

• A test particle with Jakobi energy  EJ is bound in a region
where φeff(x)<EJ since v2 >0 always.

• In satellite’s orbital plane  (r perpendicular to Ω)
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Lagrange points of satellite
eff eff0,      and      0
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If circular orbit
• Rotation angular frequency Ω2 =G(M+m)/R3

• L1 point: Saddle point satisfies (after Taylor
Expand Φeff at r=R):

• Roche Lobe: equal effective potential contour
going through saddle point
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Roche Lobe shapes to help
Differentiate

Newtonian, DM, or MOND
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Tidal disruption near giant BH

• A giant star has low density than the giant
BH, is tidally disrupted first.

• Disruption happens at radius rdis > Rbh ,
where Mbh/rdis

3
  ~ M* /R*

3

– Show a giant star is shreded before reaching a
million solar mass BH.

• Part of the tidal tail feeds into the BH, part
goes out.
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What have we learned?

• Criteria to fall into a BH as a whole piece
– size, loss cone

• Adiabatic contraction
• Tidal disruption criteria

– Mean density

• Where are we heading?
– From 2-body to N-body system
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Lec 14: Encounter a star occasionally
• Orbit deflected
• evaluate deflection of a particle when encountering

a star of mass m at distance b:
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Stellar Velocity Change Δvperp

• sum up the impulses dt gperp

– use s = vt / b

• Or using impulse approximation:
– where gperp  is the force at closest approach and
– the duration of the interaction can be estimated

as  :                  Δt  =  2 b / v
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Crossing a system of N stars plus
Dark Matter elementary particles

• let system diameter be:  2R
• Argue Crossing time tcross =2R/v
• Star number density per area ~ N/(R2π)
• Total mass M =N*m* + Ndmmdm

> N*m*
• Typically

– mdm~ 1Gev << m* = m
– Ndm > 1020  >  N* = N

AS4021, Part II 22

Number of encounters with impact
parameter b  -   b + Δb

• # of stars on the way per crossing

– each encounter is randomly oriented
– sum  is zero:
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Sum up the heating in kinetic energy
• sum over gain in (Δvperp

2)/2 in one-crossing

• consider encounters over all b
b< bmax ~ R ~ GM/v2  [M= total mass of system]
b> bmin ~ R/N
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Relaxation time
• Orbit Relaxed after nrelax times across the system

so that orbit deflected by Δv2 /v2 ~1

• thus the relaxation time is:

• Argue two-body scattering between star-star, star-
DM, lump-star, lump-DM are significant, but not
between 1Gev particles.

2
2

relax 2

relax relax cross cross

'
                                where N'=(M/m) /

8ln

'
                

8ln

v N
n N N

v

N
t n t t

! ! "
# $

= !
$



5

AS4021, Part II 25

How long does it take for real systems to
relax?

• globular cluster, N=105, R=10 pc
– tcross ~ 2 R / v ~ 105  years
– trelax ~ 108  years  << age of cluster:

relaxed
• galaxy, N=1011, R=15 kpc

– tcross ~ 108  years
– trelax ~ 1015  years  >> age of galaxy:

collisionless
• cluster of galaxies: trelax ~ age
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Self-heating/Expansion/Segregation
of an isolated star cluster: Relax!

• Core of the cluster contracts, form a tight binary
with very negative energy

• Outer envelope of cluster receives energy,
becomes bigger and bigger.
– Size increases by order 1/N per crossing time.
– Argue a typical globular cluster has size-doubled

• Low-mass stars segregate and gradually diffuse
out/escape
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Lec 15: Dynamical Friction

• As the satellite moves through a sea of background
particles, (e.g. stars and dark matter in the parent galaxy)
the satellites gravity alters the trajectory of the background
stars, building up a slight density enhancement of stars
behind the satellite

• The gravity from the wake pulls backwards on the
satellites motion, slowing it down a little
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• This effect is referred
to as “dynamical
friction” because
– it acts like a frictional

or viscous force,
– but it’s pure gravity.

• It creates density
wakes at low speed,
– & cone-shaped wakes

if satellite travels with
high speed.
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Chandrasekhar Dynamical Friction
Formula

• The dynamical friction acting on a satellite of
mass M moving at vs kms-1 in a sea of particles of
density m*n(r) with Gaussian velocity distribution

• Only stars moving slower than M contribute to the
force.
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Dependence on satellite speed

• For a sufficiently large vM, the integral
converges to a definite limit and the
frictional force therefore falls like  vM

-2.
• For sufficiently small vM we may replace

f(vM) by f(0) , hence force goes up with vM:

– This defines a typical friction timescale tfric
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Depends on M,
n*(r)m* & ndm(r)mdm

• More massive satellites feel a greater
friction
–  since they can alter trajectories more and build

up a more massive wake behind them.
• Dynamical friction is stronger in higher

density regions
– since there are more stars to contribute to the

wake so the wake is more massive.
• Note: both stars (m*~Msun) and dark

matter particles (mdm~1Gev) contribute to
dynamical friction.
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Friction & tide: effects on satellite orbit

• The drag force dissipates orbital energy E(t) and J(t)
– The decay is faster at pericentre
– staircase-like decline of E(t), J(t).

• As the satellite moves inward the tidal becomes greater
– so the tidal radius decreases and the mass m(t) will decay.
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Orbital decay of Large Magellanic Cloud:
a proof of dark matter?

• Dynamical friction to drag
LMC’s orbit at R=50-100 kpc:
– density of stars from Milky Way at

50 kpc very low
• No drag from ordinary stars

– dark matter density is high at 50 kpc
• Drag can only come from dark

matter particles in Milky Way

• Energy (from future velocity data
from GAIA) difference
earlier/later debris on the stream
may reveal evidences for orbital
decay
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Summary

• Relaxation is a measure of granularity in potential
of N-particles of different masses
– Relaxation cause energy diffusion from core to

envelope of a system,
– expansion of the system,
– evaporation (~escape) of stars

• Massive lumps leaves wakes, transport
energy/momentum to background.
– Cause orbit decay,
– galaxies merge
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Tutorial session


