

C3.0 Star clusters differ from air:

- Stars collide far less frequently

 size of stars<<distance between them
 Velocity distribution not isotropic
- Inhomogeneous density $\rho(r)$ in a Grav. Potential $\phi(r)$

- We employ a cylindrical coordinate system (R, φ,z) e.g., centred on the galaxy and align the z axis with the galaxy axis of symmetry.
- Here the potential is of the form $\phi(R,z)$.
- Density and Potential are Static and Axisymmetric - independent of time and azimuthal angle

$$\phi(R,z) \Rightarrow \rho(R,z) = \frac{1}{4\pi G} \left[R \frac{\partial}{\partial R} \left(R \frac{\partial \phi}{\partial R} \right) + \frac{\partial^2 \phi}{\partial z^2} \right]$$
$$g_r = -\frac{\partial \phi}{\partial R} \qquad g_z = -\frac{\partial \phi}{\partial z}$$
Assist Constant Operator 37

Example 6: Plummer Model for star cluster

• A spherically symmetric potential of the form:

$$\phi = -\frac{GM}{\sqrt{r^2 + a^2}}$$

e.g., for a globular cluster a=1pc, $M=10^5$ Sun Mass show Vesc(0)=30km/s

• Show corresponding to a density (use Poisson's eq): $214 \left(\frac{1}{2} + \frac{5}{2} \right)^{-\frac{5}{2}}$

$$\rho = \frac{3M}{4\pi a^3} \left(1 + \frac{r^2}{a^2} \right)^2$$

49

C5.0: Orbit in the z=0 plane of
a disk potential
$$\phi(\mathbf{R}, z)$$
.
• Energy/angular momentum of star (per unit
mass)

$$E = \frac{1}{2} \left[\dot{R}^2 + \left(R\dot{\Theta} \right)^2 \right] + \Phi(R, 0)$$

$$= \frac{1}{2} \left[\dot{R}^2 \right] + \left[\frac{J_z^2}{2R^2} + \Phi(R, 0) \right]$$

$$= \frac{1}{2} \left[\dot{R}^2 \right] + \Phi_{\text{eff}}(\mathbf{R}, 0)$$
• orbit bound within

$$\Rightarrow E \ge \Phi_{\text{eff}}(R, 0)$$

C8.3 DF & its 0th , 1st , 2nd moments $\overline{A}(\mathbf{x}) = \frac{d^3 \mathbf{x} \iint Af(x,v) d^3 \mathbf{v}}{d^3 \mathbf{x} \rho}$ $d^3 \mathbf{x} \rho = dM = d^3 \mathbf{x} \iint f(x,v) d^3 \mathbf{v}$ where $A(\mathbf{x},\mathbf{v}) = 1$, V_x , $V_x V_y$, ... $\mathbf{e}.\mathbf{g}.$, verify $\overline{V^2} = \overline{V_x^2} + \overline{V_y^2} + \overline{V_z^2}$

C9.2: Apply JE & PE to measure Dark Matter [BT4.2.1d]

- A bright sub-component of observed density $n^{*}(r)$ and anisotropic velocity dispersions $\langle V_{t}^{2} \rangle = 2(1-\beta) \langle V_{r}^{2} \rangle$
- in spherical potential $\varphi(r)$ from total (+dark) matter density $\rho(r)$

JE:
$$\frac{1}{n^*} \frac{d}{dr} \left(n^* \overline{v_r^2} \right) + \frac{\overline{v_r^2} - 2\overline{v_r^2}}{r} = \frac{d\Phi}{dr}$$
PE:
$$\frac{G \int_0^r \rho(r) 4\pi r^2 dr}{r^2} = \frac{d\Phi}{dr}$$

91

95


```
f = f_1 + f_2
density of stars plus dark matter
\rho = \rho_1 + \rho_2
```

Total density $\rho \implies \Phi$ shared total potential

What have we learned?
Meaning of anistrpic pressure and dispertion.
Usage of Jeans theorem [phase space]
Usage of Jeans eq. (dark matter)
Link among quantities in sphere.

