Q1. Argue about 10^{5} photons fit in a $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ microwave oven. [Hint: $3 \mathrm{kT}=\mathrm{hc} / \lambda$] Show the approximate solutions $\mathrm{R}(\mathrm{t})$ of the Friedman equation $(\mathrm{dR} / \mathrm{dt} / \mathrm{R})^{2}=\mathrm{AR}^{-\mathrm{n}}$ where $\mathrm{n}=4$ for radiation, $\mathrm{n}=3$ for matter, and $\mathrm{n}=2$ (negative) curvature, and $\mathrm{n}=0$ for vacuum energy, and $\mathrm{A}=0$ for static universe.
Consider a micro-cosmos of N -ants inhabiting an expanding spherical surface of radius $R=R_{0}\left(t / t_{0}\right)^{a}$, where presently we are at $t=t_{0}=1 \mathrm{~min}, R=R_{0}$ $=1$ lightsecond. Let $\mathrm{a}=1 / 2, \mathrm{~N}=100$. What is the present rate of expansion $\mathrm{dR} / \mathrm{dt} / \mathrm{R}=$ in units of $1 / \mathrm{min}$? How does the ant surface density change as function of cosmic time? [due 21Sept]

Q2. A baby universe is initially at time $\mathrm{t}_{-} \mathrm{i}=10^{-40}$ sec flat with an Omega $=$ 1.0. If this toy universe expands first under certain energy density $\rho \sim R^{-n}$ $(\mathrm{n}=1)$ from time t i to time $\mathrm{t} \mathrm{f}=1 \mathrm{sec}$, and then expands normally under radiation with $\rho \sim R^{-n}(n=4)$ from $t _f=1$ sec until its 1 -year birthday $t _b=1$ year. Prove that this universe satisfies the thermo-dynamical law $\operatorname{PdV}=-$ $d E$, if $\mathrm{V}=\mathrm{R}^{3}, \mathrm{E}=\mathrm{V} \rho \mathrm{c}^{2}$, the pressure $\mathrm{P}=[(\mathrm{n}-3) / 3] \rho \mathrm{c}^{2}$. [due 28Sept]

Q3. Adopt a cosmic age of 13 Gyrs and a division of energy (0.7:0:2999:0.0001:0.0) $=$ (Omega of vacuum: matter: radiation: curvature). Was the CMB temperature high enough to ionise hydrogen during the radiation era?
Estimate the fraction of the time of the universe that the radiation dominates. [Hint: -13.6 eV is the energy for the ground state of hydrogen]. [due 5Oct]

Q4. Derive the time-redshift relation for a flat universe; Do a Taylor expansion of the angular diameter distance at low z. Use the Friedman equation to argue that in a universe made purely of normal matter, photons, and ordinary neutrinos, has a negative $\mathrm{d}^{2} \mathrm{R} / \mathrm{dt}^{2}$. [due 12Oct]

Q5. For a coupled radiation-baryon fluid, the sound speed $\mathrm{Cs}^{2}=\mathrm{c}^{2} / 3 /(1+\mathrm{Q})$, $\mathrm{Q}=\left(3 \rho_{\mathrm{b}}\right) /\left(4 \rho_{\mathrm{r}}\right)$. This sound speed Cs drops from c/sqrt(3) at radiationdominated era to $\mathrm{c} / \mathrm{sqrt}(\mathrm{Y})$ at dark-matter-radiation equality. Estimate Y . Explain why the CMB has a regular pattern in the k -space, and estimate the sound horizon. [due 19Oct]

Q6. Estimate number density ratio of hot/cold/baryonic DM. [due 26 Oct, Q\&A session Friday afternoon just before consolidation week]

