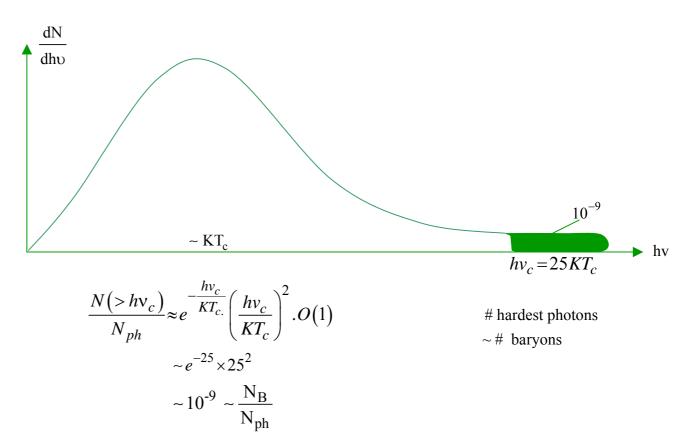
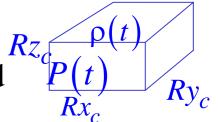
Energetic Tail of Photon Bath



If run short of hard photon to unbind => "Freeze-out" => $KT_c \sim \frac{hv_c}{25}$

Evolution of Sound Speed

Expand a box of fluid



Sound Speed

$$C_{s}^{2} \equiv \frac{\partial P / \partial (vol)}{\partial \rho / \partial (vol)},$$
$$= \frac{\partial P / \partial R}{\partial \rho / \partial R}$$

$$V o l = R^{3} (t) \cdot x_{c} y_{c} z_{c}$$

$$\propto R^{3}(t)$$

Radiation Matter

Where fluid density
$$\rho(t) = \rho_r$$
 ρ_m

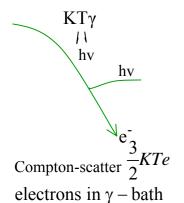
Fluid pressure $P(t) = \frac{c^2}{3}\rho_r$ $\frac{\rho_m}{\mu} \cdot KT_m$

Note $\rho_r \propto R^{-4}$ Matter number Random motion energy Non-Relativistic IDEAL GAS

 $\rho_m \propto R^{-3}$ Neglect $\frac{1}{\mu}KT_m << c^2$

Show
$$C_s^2 = c^2/3 / (1+Q)$$
, $Q = (3?_m) / (4?_r)$, \rightarrow Cs drops

- from c/sqrt(3) at radiation-dominated era
- to c/sqrt(5.25) at matter-radiation equality



Keep electrons hot Te \sim Tr until redshift z

$$Tr \sim 1500 \times \left(\frac{1+z}{500}\right)$$

After decoupling (z<500), $Cs \sim 6 (1+z) \text{ m/s because}$

 $\underline{d}^{3}\underline{P} \ \underline{d}_{x}^{3}$ invarient phase space volume

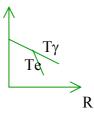
dX

So:
$$P \propto x^{-1} \propto R^{-1}$$

$$\frac{3}{2} \times T_e = mv^2 / 2 \propto R^{-2} \quad \text{Te} \sim 1500 \, K \times \left(\frac{1+z}{500}\right)^2$$

$$dP \qquad \qquad C_s \sim 6 \, (1+z) \, \text{m/s}$$

dX

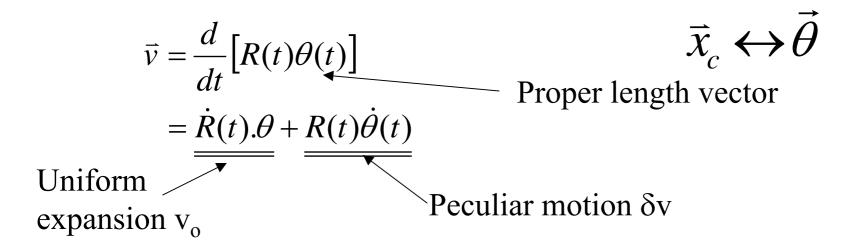


Until reionization $z \sim 10$ by stars quasars

• Growth of Density Perturbations and peculiar velocity

Peculiar Motion

• The motion of a galaxy has two parts:



Damping of peculiar motion (in the absence of overdensity)

• Generally peculiar velocity drops with expansion.

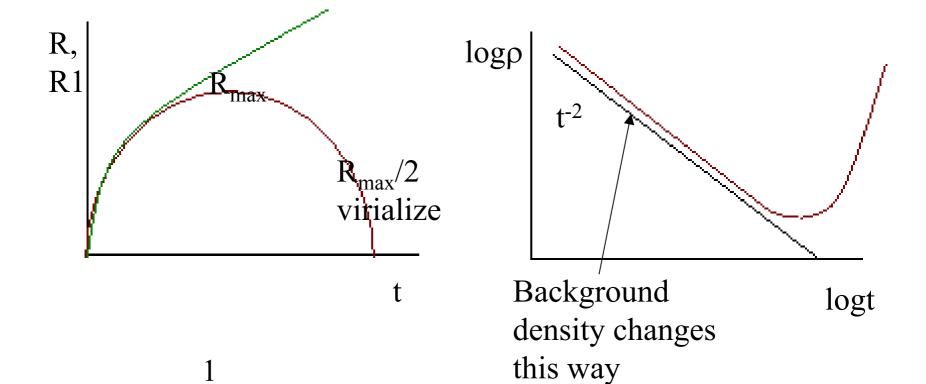
$$R^2\dot{\theta} = R*(R\dot{\theta}) = \text{constant} \sim \text{"Angular Momentum"}$$

$$\delta v = R(t)\dot{x}_c = \frac{\text{constant}}{R(t)}$$

Non-linear Collapse of an Overdense Sphere

- An overdense sphere is a very useful non linear model as it behaves in exactly the same way as a closed sub-universe.
- The density perturbations need not be a uniform sphere: any spherically symmetric perturbation will clearly evolve at a given radius in the same way as a uniform sphere containing the same amount of mass.

$$\rho_b$$
 $\rho_b + \delta \rho$



Gradual Growth of perturbation

$$\rightarrow \frac{\delta \rho}{\rho} = \frac{3c^2}{8\pi G} \frac{1}{\rho R^2} \propto \begin{cases} R^2 \text{ (mainly radiation } \rho \propto R^{-4}) \\ R \text{ (mainly matter } \rho \propto R^{-3}) \end{cases}$$

Perturbations Grow!

Equations governing Fluid Motion

$$\nabla^{2}\phi = 4\pi G\rho \qquad \text{(Poissons Equation)}$$

$$\frac{1}{\rho}\nabla\rho = \frac{d\ln\rho}{dt} = -\vec{\nabla}.\vec{v} \quad \text{(Mass Conservation)}$$

$$\frac{dv}{dt} = -\vec{\nabla}\phi - c_{s}^{2}\nabla\ln\rho \quad \text{(Equation of motion)}$$

$$\frac{\nabla\rho}{\rho} \quad \text{since } \partial\rho = c_{s}^{2}\partial\rho$$

• Let

$$\rho = \rho_o + \delta \rho$$

$$v = v_o + \delta v = \dot{R} \chi_c + R \dot{\chi}_c$$

$$\phi = \phi_o + \delta \phi$$

$$x(t) = R(t) \chi_c$$

$$\phi = \phi_o + \delta \phi$$

• We define the Fractional Density Perturbation:

$$\delta = \frac{\delta \rho}{\rho_o} = \delta(t) \exp(-i\vec{k} \cdot \vec{x})$$

- Motion driven by gravity: $\vec{g}_o(t) + \vec{g}_1(\theta, t)$ due to an overdensity: $\rho(t) = \rho_o(1 + \delta(\theta, t))$
- Gravity and overdensity by Poissons equation:

$$-\vec{\nabla}_1 \cdot g_1 = 4\pi G \rho_o \delta$$

• Continuity equation:

$$-\vec{\nabla}.\delta\vec{v} = \frac{d}{dt} \left(\delta(\theta, t) \right)$$
 The over density will rise if there is an inflow of matter

Peculiar motion and peculiar gravity both scale with d and are in the same direction.

the equation for linear growth

At high z >> 1 $\delta \propto R(t)$ & matter domination

$$ho \propto R^{-3}$$
 $\delta
ho \propto R^{-2}$

$$\delta \rho \propto R^{-2}$$

 $\delta\phi\propto R^0$

In the equation

$$\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{R}}{R} \frac{\partial \delta}{\partial t} = (4\pi G \rho_o + c_s^2 \nabla^2) \delta$$

Gravity has the tendency to make the density perturbation grow exponentially.

Pressure makes it oscillate

Nearly Empty Pressure-less Universe

$$\Omega_{M} \sim 0$$

$$\frac{\partial^{2} \delta}{\partial t^{2}} + \frac{2}{t} \frac{\partial \delta}{\partial t} = 0, \quad \dot{H} = \frac{\dot{R}}{R} = \frac{1}{t} \qquad (R \propto t)$$

$$\delta \propto t^{0} = \text{constant}$$

$$\rightarrow \text{ no growth}$$

The Jeans Instability

• Case 1- no expansion

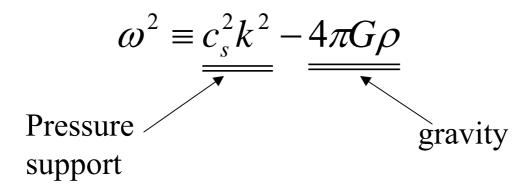
– Assume the density contrast δ has a wave-like form

$$\delta = \delta_o \exp(i\vec{k}.\vec{r} - i\omega t)$$

– Assume no expansion $\dot{R} = 0$

$$\frac{\partial^2 \delta}{\partial t^2} + 2 * 0 * \frac{\partial \delta}{\partial t} = -\omega^2 \delta$$

 $- \rightarrow$ the dispersion relation



- At the (proper) JEANS LENGTH scale we switch from
 - standing sound waves for shorter wavelengths to
 - the exponential growth of perturbations for long wavelength modes

$$\lambda_J = c_s \sqrt{\frac{\pi}{G\rho}}$$

- $\lambda < \lambda_J$, $\omega^2 > 0$ \rightarrow oscillation of the perturbation.
- $\lambda \ge \lambda_J$, $\omega^2 \le 0$ exponential growth/decay

$$\delta \propto \exp(\pm \Gamma t)$$
 where $\Gamma = \sqrt{-\omega^2}$

• Timescale:

$$\tau = (G\rho)^{-\frac{1}{2}}$$
= dynamical collapse time
for region of density ρ .

• Application: Collapse of clouds, star formation.

Jeans Instability

- Case 2: on very large scale $\lambda >> \lambda_{\underline{J}}$ of Expanding universe
 - Neglect Pressure (restoring force) term

$$c_s^2 k^2 << 4\pi G \rho = c_s^2 k_J^2$$

$$\frac{\partial^2 \delta}{\partial t^2} + 2H \frac{\partial \delta}{\partial t} = \frac{3}{2} H^2 \Omega_M . \delta$$

• Einstein de Sitter

$$\Omega_M = 1, H = \frac{\dot{R}}{R} = \frac{2}{3t}$$

Verify Growth Solution $\delta \propto R \propto t^{\frac{2}{3}} \propto \frac{1}{1+z}$ $\Omega_{\rm M}=1$

• Generally $og\delta$ Log R/R_0

Case III: Relativistic Fluid

• equation governing the growth of perturbations

being:
$$\frac{d^2\delta}{dt^2} + 2H \frac{d\delta}{dt} = \delta \cdot \left(\frac{32\pi G\rho}{3} - k^2 c_s^2 \right)$$

 $\Rightarrow \delta \propto t \propto R^2$ for length scale $\lambda >> \lambda_J \sim ct$

Jeans Mass Depends on the Species of the Fluid that dominates

• If Photon dominates:

$$M_J^{\gamma} = \rho_{\gamma}(t) \frac{4\pi}{3} \left(\frac{\lambda_J}{2}\right)^3 \propto \frac{1}{6t^2} \left[\frac{c}{\sqrt{3}}t\right]^3 \propto t^1 \propto (1+z)^{-2}$$

$$c_s t = \text{distance travelled since big bang}$$

• If DarkMatt dominates & decoupled from photon:

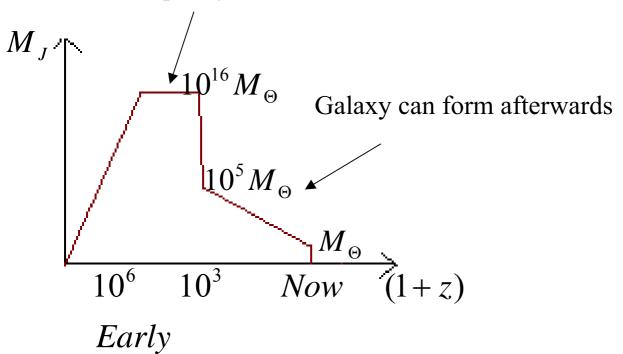
$$M_{J}^{D} = \rho_{D}(t) \frac{4\pi}{3} \left(\frac{\lambda_{J}}{2}\right)^{3} \propto (1+z)^{3} \left[c_{s}t\right]^{3} \propto t^{-1}$$

$$t \propto (1+z)^{-3/2} \propto R^{3/2},$$

non-relativistic cooling of random motion $c_s \propto 1/R \propto (1+z)$

Jeans Mass past and now

Flattens out at time of equality.



Note: $R \propto (1+z)^{-1}$

Dark Matter Overdensity Growth Condition

- GROW Possible only if
 - During matter-domination ($t > t_{eq}$) or
 - during radiation domination, but on proper length scales larger than
 - sound horizon ($\lambda > c_s t$) &
 - free-streaming length of relativistic dark matter (λ > c t_{fs})

Theory of CMB Fluctuations

• Linear theory of structure growth predicts that the perturbations:

$$\delta_{\scriptscriptstyle D}$$
 in dark matter $\frac{\delta \rho_{\scriptscriptstyle \mathrm{D}}}{\rho_{\scriptscriptstyle \mathrm{D}}}$

$$\delta_{\scriptscriptstyle B}$$
 in baryons $\frac{\delta \rho_{\scriptscriptstyle \mathrm{B}}}{\rho_{\scriptscriptstyle \mathrm{B}}}$

$$\delta_r$$
 in radiation $\frac{\delta \rho_r}{\rho_r}$ Or $\delta_r = \frac{3}{4} \delta_r = \frac{\delta n_{\gamma}}{n_{\gamma}}$

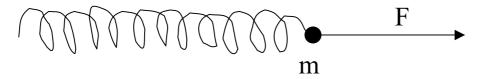
will follow the following coupled equations.

$$\frac{d^{2}}{dt^{2}} \begin{pmatrix} \delta_{D} \\ \delta_{B} \\ \tilde{\delta}_{r} \end{pmatrix} + 2H(t) \frac{d}{dt} \begin{pmatrix} \delta_{D} \\ \delta_{B} \\ \tilde{\delta}_{r} \end{pmatrix} + k^{2} \begin{pmatrix} c_{s,D}^{2} \delta_{D} \\ c_{s,B}^{2} \delta_{B} \\ c_{s,r}^{2} \tilde{\delta}_{r} \end{pmatrix} = \nabla^{2} \Psi = -k^{2} \Psi$$

• Where ψ is the perturbation in the gravitational potential, with $\Psi_{x,t} \propto \Psi(t) \exp(i\vec{k}.\vec{x})$

 $\Psi = 4\pi G \delta \rho_D + 4\pi G \delta \rho_B + 8\pi G \delta \rho_k$ $= 4\pi G \rho_{crit} \times \left[\Omega_D \delta_D + \Omega_R \delta_R + 2\Omega_r \delta_r\right]$ Gravitational Coupling

• This is similar to a spring with a restoring force:

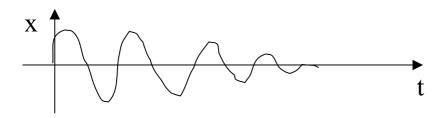


• $F_{restoring} = -m\omega^2 x$

$$\frac{d^2x}{dt^2} = \frac{F}{m} - \omega^2 x - \mu \frac{dx}{dt}$$

Term due to friction

$$\frac{d^2x}{dt^2} + \mu \frac{dx}{dt} + \omega^2 x = \frac{F(t)}{m}$$
 (Displacement for Harmonic Oscillator)



• The solution of the Harmonic Oscillator equation is:

For B or R
$$c_s^2 = \frac{c^2}{3(1+Q)}$$

$$Q = \frac{3\rho_B}{4\rho_R}$$

$$Q = \frac{3\rho_B}{4\rho_R}$$

$$Q = \frac{Q}{4\rho_R}$$

$$Q = \frac{Q}{4\rho_R}$$

- Amplitude is sinusoidal function of k c_s t
 - if k=constant and oscillate with t
 - or t=constant and oscillate with k.

• We don't observe δ_B directly-what we actually observe is temperature fluctuations.

$$\frac{\Delta T}{T} = \frac{\Delta n_{\gamma}}{3n_{\gamma}} \qquad n_{\gamma} \sim R^{-3} \propto T^{3}$$

$$= \frac{\delta_{B}}{3} = \frac{\widetilde{\delta}_{R}}{3} \qquad \varepsilon_{\gamma} \sim n_{\gamma}kT \propto T^{4}$$

- The driving force is due to dark matter over densities.
- The observed temperature is:

$$\left(\frac{\Delta T}{T}\right)_{\text{obs}} = \frac{\delta_B}{3} + \frac{\psi}{c^2}$$
 Effect due to having to climb out of graviatational well

• The observed temperature also depends on how fast the Baryon Fluid is moving.

Velocity Field
$$\nabla v = -\frac{d\delta_B}{dt}$$

$$\left(\frac{\Delta T}{T}\right)_{obs} = \frac{\delta_B}{3} + \frac{\psi}{c^2} \pm \frac{v}{c}$$
Doppler Term