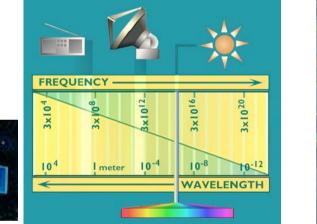
AS 4022: Cosmology

HS Zhao and K Horne

Online notes: star-www.st-and.ac.uk/~hz4/cos/cos.html

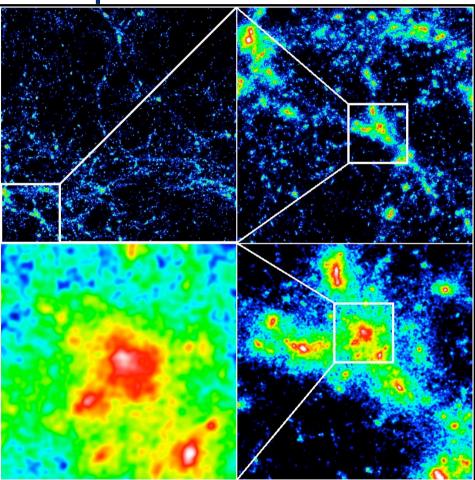

Handouts in Library

Summary sheet of key results (from John Peacock) take your own notes (including blackboard lectures)

AS 4022 Cosmology

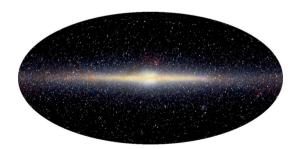
Observable Space-Time and Bands

- See What is out there? In all Energy bands
 - − Pupil → Galileo's Lens → 8m telescopes → square km arrays
 - Radio, Infrared \leftarrow optical \rightarrow X-ray, Gamma-Ray (spectrum)



– COBE satellites ← Ground → Underground DM detector

- Know How were we created? XYZ & T ?
 - Us, CNO in Life, Sun, Milky Way, ... further and further
 - → first galaxy → first star → first Helium → first quark
 - Now → Billion years ago → first second → quantum origin


The Visible Cosmos: a hierarchy of structure and motion

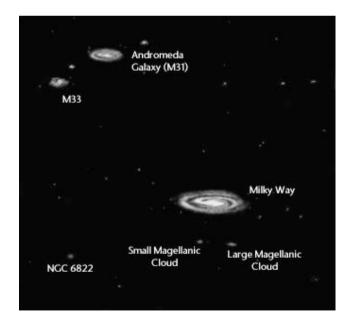
• "Cosmos in a computer"

Observe A Hierarchical Universe

- Planets
 - moving around stars;
- Stars grouped together,
 - moving in a slow dance around the center of galaxies.

4

Galaxies themselves

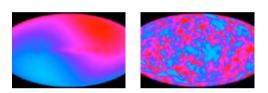

- some 100 billion of them in the observable universe-
- form galaxy clusters bound by gravity as they journey through the void.
- But the largest structures of all are superclusters,
 - each containing thousands of galaxies
 - and stretching many hundreds of millions of light years.
 - are arranged in filament or sheet-like structures,
 - between which are gigantic voids of seemingly empty space.

Cosmic Village

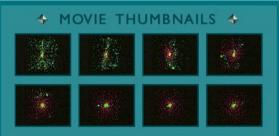
- The Milky Way and Andromeda galaxies,
 - along with about fifteen or sixteen smaller galaxies,
 - form what's known as the Local Group of galaxies.
- The Local Group
 - sits near the outer edge of a supercluster, the Virgo cluster.
 - the Milky Way and Andromeda are moving toward each other,
 - the Local Group is falling into the middle of the Virgo cluster, and

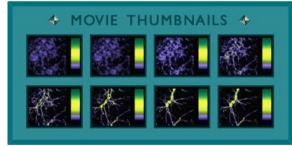


- the entire Virgo cluster itself,
 - is speeding toward a mass
 - known only as "<u>The Great Attractor</u>."


Introducing Gravity and DM (Key players)

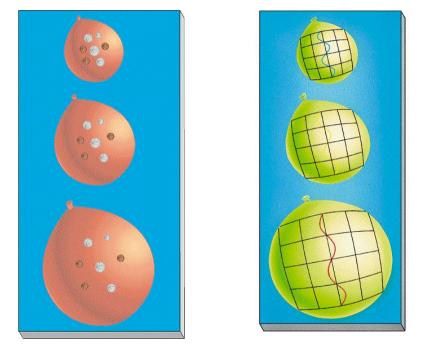
- These structures and their movements
 - can't be explained purely by the expansion of the universe
- must be guided by the gravitational pull of matter.
- Visible matter is not enough
- one more player into our hierarchical scenario:
- dark matter.




Cosmologists hope to answer these questions:

- How old is the universe? H₀
- Why was it so smooth? P(k), inflation

- How did structures emerge from smooth? N-body
- How did galaxies form? Hydro


- Will the universe expand forever? Omega, Lamda
- Or will it collapse upon itself like a bubble?

1st main concept in cosmology

Cosmological Redshift

Stretch of photon wavelength in expanding space

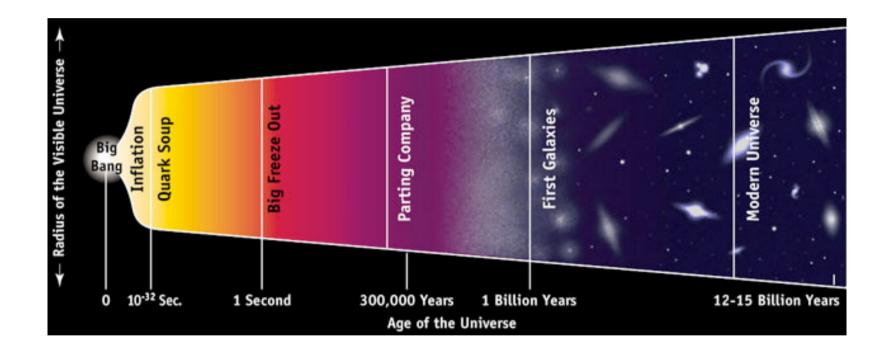
Emitted with intrinsic wavelength λ₀ from Galaxy A at time t<t_{now} in smaller universe R(t) < R_{now}

- \rightarrow Received at Galaxy B now (t_{now}) with λ
- $\lambda / \lambda_0 = R_{now} / R(t) = 1 + z(t) > 1$

1st main concept: Cosmological Redshift

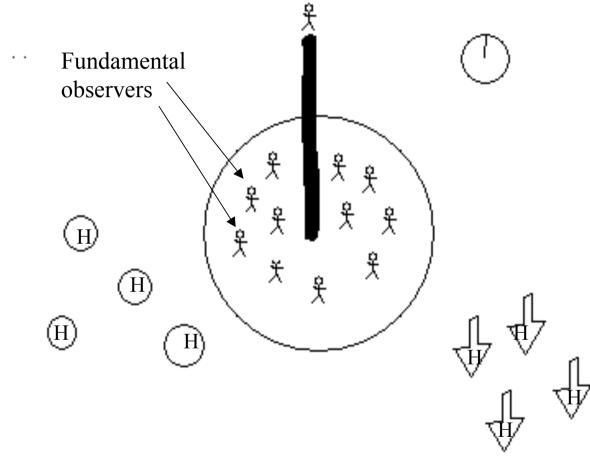
- The space/universe is expanding,
 - Galaxies (pegs on grid points) are receding from each other
- As a photon travels through space, its wavelength becomes stretched gradually with time.
 - Photons wave-packets are like links between grid points
- This redshift is defined by:

$$z \equiv \frac{\lambda - \lambda_o}{\lambda_o}$$
$$\frac{\lambda}{\lambda_o} = 1 + z$$

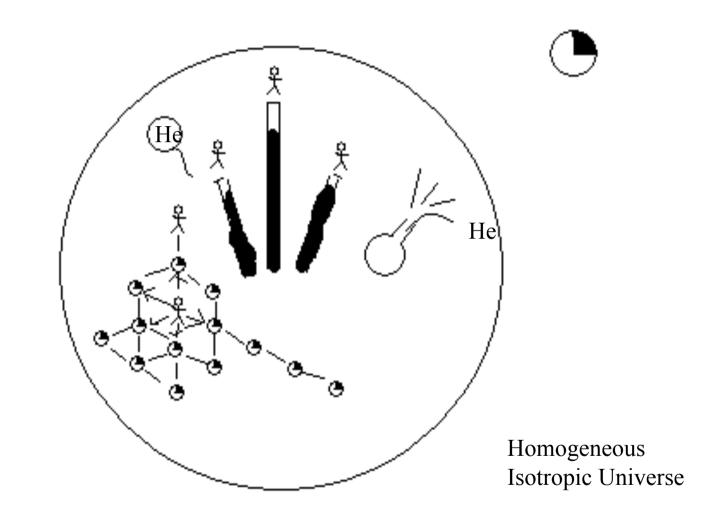

- E.g. Consider a quasar with redshift z=2. Since the time the light left the quasar the universe has expanded by a factor of 1+z=3. At the epoch when the light left the quasar,
 - What was the distance between us and Virgo (presently 15Mpc)?
 - What was the CMB temperature then (presently 3K)?

$$1 + z = \frac{\lambda_{now}}{\lambda(t)} \quad (\text{wavelength})$$
$$= \frac{R_{now}}{R(t)} \quad (\text{expansion factor})$$
$$= \frac{T(t)}{T_{now}} \quad (\text{Photon Blackbody T} \propto 1/\lambda, why?)$$

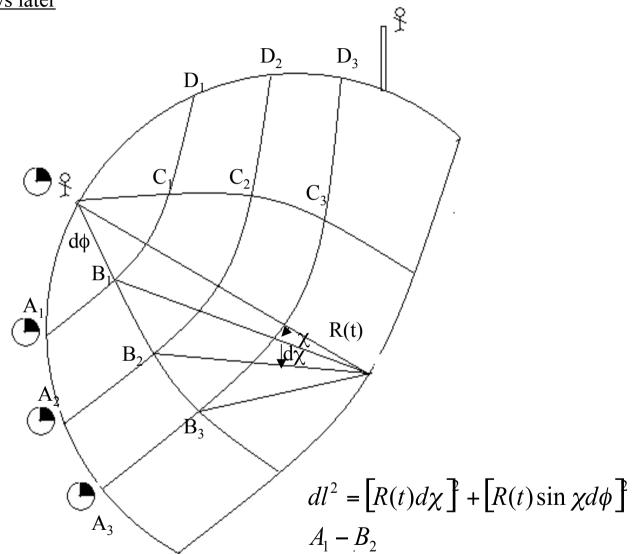
Lec 2


Cosmic Timeline

• Past \rightarrow Now


Trafalgar Square

London Jan 1

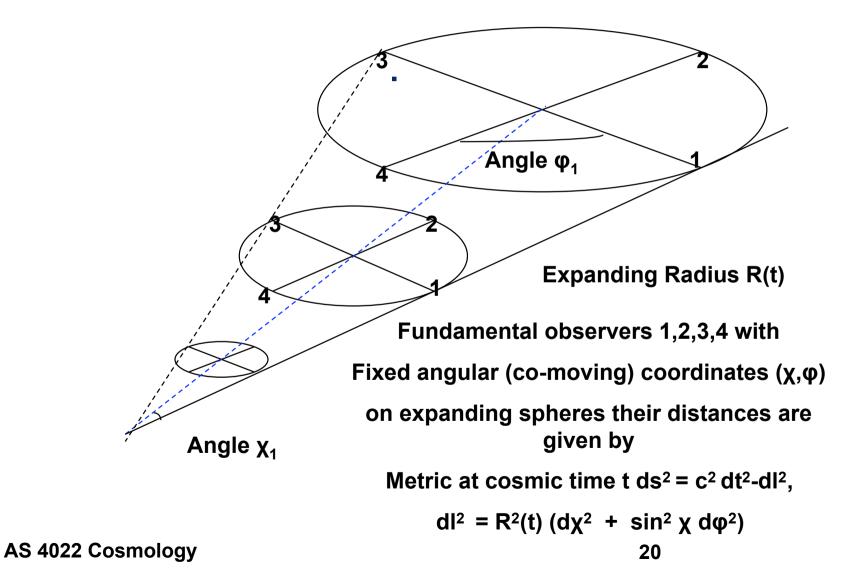

A comic explanation for cosmic expansion ...

3 mins later

Walking \Leftrightarrow Elevating \Leftrightarrow Earth Radius Stretching R(t)

Feb 14 t=45 days later

Four Pillars of Hot Big Bang


- Galaxies moving apart from each other
 - Redshift or receding from each other
 - Universe was smaller
- Helium production outside stars
 - Universe was hot, at least 10⁹K to fuse 4H → He, to overcome a potential barrier of 1MeV.
- Nearly Uniform Radiation 3K Background (CMB)
 - Universe has cooled, hence expanded by at least a factor 10⁹
- Missing mass in galaxies and clusters (Cold Dark Matter: CDM)
 - Cluster potential well is deeper than the potential due to baryons
 - CMB temperature fluctuations: photons climbed out of random potentials of DM

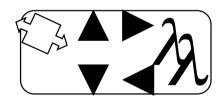
2nd Concept: metric of 1+2D universe

- Analogy of a network of civilization living on an expanding star (red giant).
 - What is fixed (angular coordinates of the grid points)
 - what is changing (distance).

Analogy to Expanding Universe R(t) Sint . do A Network of Living on Expanding Surface of a Red Giant $dl^{2} = [R(t) dx]^{2} + [R(t) \sin \chi dq]^{2}$ [from spherical [from spherical geometry -Metric $dS^2 = C^2 dt^2 - dl^2 [Speainl Relation Lorentz-invariant$

Analogy: a network on a expanding sphere

3rd Concept: The Energy density of Universe


- The Universe is made up of three things:
 - VACUUM
 - MATTER
 - PHOTONS (radiation fields)
- The total energy density of the universe is made up of the sum of the energy density of these three components.

$$\varepsilon(t) = \varepsilon_{vac} + \varepsilon_{matter} + \varepsilon_{rad}$$

 From t=0 to t=10⁹ years the universe has expanded by R(t).

Eq. of State for Expansion & analogy of baking bread

- Vacuum~air holes in bread
- Matter ~nuts in bread
- Photons ~words painted

- Verify expansion doesn't change N_{hole}, N_{proton}, N_{photon}
 - No Change with rest energy of a proton, changes energy of a photon

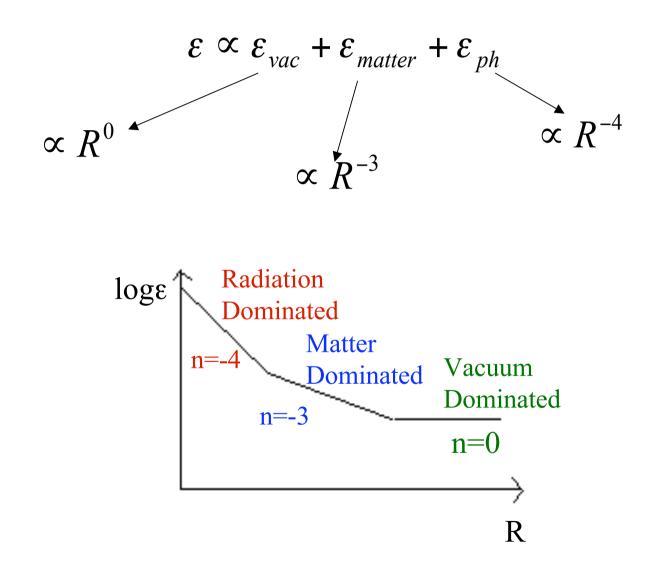
$$\varepsilon(t) = \rho_{eff}(t)c^{2}$$
$$\frac{\varepsilon(t)}{c^{2}} = \rho_{eff}(t)$$
• VACUUM ENERGY: $\rho = \text{constant} \implies \text{E}_{vac} \propto R^{3}$

• MATTER:

$$\rho R^3 = \text{constant}, \implies m \approx \text{constant}$$

• **RADIATION**:number of photons N_{ph} = constant

$$\Rightarrow n_{ph} \approx \frac{N_{ph}}{R^3} \qquad \text{Wavelength stretches } :\lambda \sim$$


$$\text{Photons:E} = h\upsilon = \frac{hc}{\lambda} \sim \frac{1}{R}$$

$$\Rightarrow \varepsilon_{ph} \sim n_{ph} \times \frac{hc}{\lambda} \sim \frac{1}{R^4}$$

AS 4022 Cosmology

R

• The total energy density is given by:

Key Points

Scaling Relation among

- Redshift: z,
- expansion factor: R
 - Distance between galaxies
- Temperature of CMB: T
 - Wavelength of CMB photons: lambda

Metric of an expanding 2D+time universe

- Fundamental observers
 - Galaxies on grid points with fixed angular coordinates

Energy density in

- vacuum, matter, photon
- How they evolve with R or z

• If confused, recall the analogies of

- balloon, bread, a network on red giant star, microwave oven

Topics Theoretical and Observational

- Universe of uniform density
 - Metrics ds, Scale R(t) and Redshift
 - EoS for mix of vacuum, photon, matter
- Thermal history
 - Nucleosynthesis
 - He/D/H

Structure formation

- Growth of linear perturbation
- Origin of perturbations
- Relation to CMB

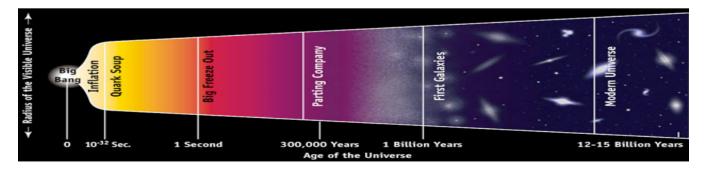
- Quest of H0 (obs.)
 - Applications of expansion models
 - Distances Ladders
 (GL, SZ)
- Quest for Omega (obs.)
 - Galaxy/SNe surveys
 - Luminosity/Correlation Functions
- Cosmic Background
 - COBE/MAP/PLANCK etc.
 - Parameters of cosmos

Hongsheng.Zhao (hz4)

Keith D. Horne (kdh1)

Lec 3

Acronyms in Cosmology


- Cosmic Background Radiation (CBR)
 - Or CMB (microwave because of present temperature 3K)
 - Argue about 10⁵ photons fit in a 10cmx10cmx10cm
 microwave oven. [Hint: 3kT = h c / λ]

- CDM/WIMPs: Cold Dark Matter, weakly-interact massive particles
 - At time DM decoupled from photons, T ~ 10^{14} K, kT ~ 0.1 mc^2
 - Argue that dark particles were
 - non-relativistic (v/c << 1), hence "cold".</p>
 - Massive (m >> m_{proton} =1 GeV)

Brief History of Universe

Inflation

- Quantum fluctuations of a tiny region
- Expanded exponentially
- Radiation cools with expansion T ~ 1/R ~t^{-2/n}
 - He and D are produced (lower energy than H)
 - Ionized H turns neutral (recombination)
 - Photon decouple (path no longer scattered by electrons)
- Dark Matter Era
 - Slight overdensity in Matter can collapse/cool.
 - Neutral transparent gas
- Lighthouses (Galaxies and Quasars) form
 - UV photons re-ionize H
 - Larger Scale (Clusters of galaxies) form

AS 4022 Cosmology

Acronyms and Physics Behind

DL: Distance Ladder

 Estimate the distance of a galaxy of size 1 kpc and angular size 1 arcsec? [About 0.6 10⁹ light years]

GL: Gravitational Lensing

- Show that a light ray grazing a spherical galaxy of 10¹⁰ Msun at typical b=1 kpc scale will be bent ~4GM/bc² radian ~1 arcsec
- It is a distance ladder

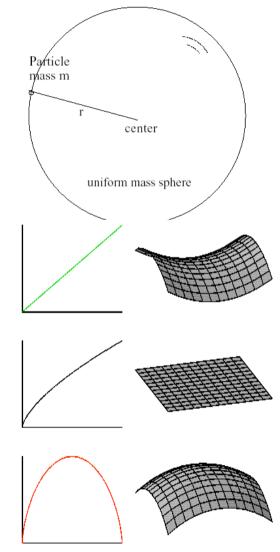
• SZ: Sunyaev-Zeldovich effect

- A cloud of 1kev thermal electrons scattering a 3K microwave photon generally boost the latter's energy by 1kev/500kev=0.2%
- This skews the blackbody CMB, moving low-energy photons to high-energy; effect is proportional to electron column density.

- the energy density of universe now consists roughly
 - Equal amount of vacuum and matter,
 - 1/10 of the matter is ordinary protons, rest in dark matter particles of 10Gev
 - Argue dark-particle-to-proton ratio ~ 1
 - Photons (3K ~10⁻⁴ev) make up only 10⁻⁴ part of total energy density of universe (which is ~ proton rest mass energy density)
 - Argue photon-to-proton ratio ~ 10^{-4} GeV/(10^{-4} ev) ~ 10^{9}

What have we learned?

Concepts of Thermal history of universe


- Decoupling
- Last scattering
- Dark Matter era
- Compton scattering
- Gravitational lensing
- Distance Ladder
- Photon-to-baryon ratio >>1

• <u>If confused</u>, recall the analogy of

- Crystalization from comic soup,
- Last scattering photons escape from the photosphere of the sun

The rate of expansion of Universe

- Consider a sphere of radius r=R(t) X,
- If energy density inside is ρ c²
- Total effective mass inside is M = 4 πρ r³ /3
- Consider a test mass m on this expanding sphere,
- For Test mass its Kin.Energy + Pot.E. = const E
- \rightarrow m (dr/dt)²/2 G m M/r = cst
- →(dR/dt)²/2 4 πG ρ R²/3 = cst cst>0, cst=0, cst<0</p>

 $(dR/dt)^2/2 = 4 \ \pi G \ (\rho + \rho_{cur}) \ R^2/3$ where cst is absorbed by $\rho_{cur} \sim R^{(-2)}$

Typical solutions of expansion rate

H²=(dR/dt)²/R²=8πG (ρ_{cur} + ρ_{m} + ρ_{r} + ρ_{v})/3 Assume domination by a component $\rho \sim R^{-n}$ Show Typical Solutions Are

$$\rho \propto R^{-n} \propto t^{-2}$$

n = 2(curvature constant dominate)

$$n = 3(matter \text{ dominate})$$

n = 4(radiation dominate)

 $n \sim 0$ (vaccum dominate): $\ln(R) \sim t$

• Argue also $H = (2/n) t^{-1} \sim t^{-1}$. Important thing is scaling!