Testing MOND in High-z Galaxies

Federico Lelli Arcetri Observatory

Main Collaborators: T. Bisbas, C. De Breuck, E. Di Teodoro, P. Li, L. Lin, A. Man, A. Marasco, S. McGaugh, P. Papadopoulos, J. Schombert, Z.-Y. Zhang.

Why testing MOND at high z?1. Dynamical laws of galaxies (RAR, etc):In MOND, fundamental Laws of Nature \rightarrow exist at any zIn ACDM, emerge from galaxy formation \rightarrow break at some z

Why testing MOND at high z?

- 1. Dynamical laws of galaxies (RAR, etc): In MOND, fundamental Laws of Nature \rightarrow exist at any *z* In Λ CDM, emerge from galaxy formation \rightarrow break at some *z*
- 2. MOND-cosmology connection:

 $a_0 \simeq c \cdot H_0 \rightarrow a_0(z) \simeq c \cdot H(z)$ or some f(z)? $a_0 \simeq c^2 \sqrt{\Lambda} \rightarrow a_0$ does *not* vary with z ?

Why testing MOND at high z?

1. Dynamical laws of galaxies (RAR, etc): In MOND, fundamental Laws of Nature \rightarrow exist at any z In Λ CDM, emerge from galaxy formation \rightarrow break at some z

2. MOND-cosmology connection:

$$a_0 \simeq c \cdot H_0 \rightarrow a_0(z) \simeq c \cdot H(z)$$
 or some $f(z)$?
 $a_0 \simeq c^2 \sqrt{\Lambda} \rightarrow a_0$ does *not* vary with z ?

3. Distance – redshift relation: In Λ CDM \rightarrow High-*z* galaxies are extremely compact (R_h<1 kpc) In MOND \rightarrow Same D_A(*z*)? Or a different one?

Rotation Curves across Cosmic Time

Key lesson from z=0: Extended HI disks

Star-forming disk (stars, H α , CO)

Atomic gas disk (HI)

NGC 6946 (Boomsma+2008, A&A)

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

MOND fits to 175 HI Rotation Curves at z=0

Li, Lelli, McGaugh et al. (2018) - after - Begeman, Broeils, Sanders (1991), Sanders (1996), Sanders & Verheijen (1998)

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Near Future: Square Kilometre Array (SKA)

MeerKAT (existing) \rightarrow SKA-mid (~2030)

Goal: detect $M_{\rm HI} \simeq 10^{10} \, M_{\odot}$ at $z \simeq 1$ (possibly spatially resolved)

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Rotation Curves across Cosmic Time

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Cold Gas Tracers at high-z with ALMA

De Ugarte Postigo+(2012, A&A)

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Cold Gas Tracers at high-z with ALMA

High-resolution study of two disk galaxies:

• z~1.5: CO(2-1), CO(3-2)

• z~2.2: CO(3-2), CO(4-3)

Lelli+(2013, A&A)

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Two main-sequence galaxies at cosmic noon

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Two main-sequence galaxies at cosmic noon

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Star-forming main-sequence galaxy at z≃1.5

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Star-forming main-sequence galaxy at $z \simeq 1.5$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Star-forming main-sequence galaxy at z≃2.2

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

~ 254 km/s

HST surface brightness profiles $\rightarrow g_* = V_*^2/R$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Mass Models: Newton without DM

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Mass Models: MOND with $a_0 = 1.2 \cdot 10^{-10} \text{ m/s}^2$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Mass Models: MOND with $a_0(z) \propto (1+z)^{3/2}$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Mass Models: MOND with $a_0(z) \propto (1+z)^3$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Cold gas tracers at high z with ALMA

[CII] line at 158 µm:

- Main coolant of the ISM: strong & trace cold gas
- Ion. potential of 11.3 eV, similar to HI (13.6 eV)
- Multiphase tracer: atomic, molecular and ionized gas

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

- 15 galaxies at z=4-5 with known [CII] flux > 2 Jy km/s
- Follow-up observations at $0.05" 0.20" \rightarrow 0.5-1.0$ kpc
- Originally identified as SMGs, QSOs, LBGs, DLAs
 - \rightarrow high mass (M_{*} $\simeq 10^{10}$ -10¹¹ M_{\odot}) & high SFR (~10²-10³ M_{\odot}/yr)
- Data analysis in progress (Lelli+ in prep.)

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

TRICEPS: Ubiquitous regular rotation at z=4-5

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

TRICEPS: Ubiquitous regular rotation at z=4-5

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Rotation Curve: $V_{obs}^2 = -R\nabla\Phi_{tot}$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Gas Distribution: $V_{gas}^2 = -R\nabla \Phi_{gas}$ Rotation Curve: $V_{obs}^2 = -R\nabla \Phi_{tot}$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Disk Distribution: $V_{disk}^2 = -R\nabla \Phi_{disk}$ Gas Distribution: $V_{gas}^2 = -R\nabla \Phi_{gas}$ Rotation Curve: $V_{obs}^2 = -R\nabla \Phi_{tot}$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

MOND fits at $z \simeq 4-5$ with $a_0 = 1.2 \cdot 10^{-10} \text{ m/s}^2$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Comparison with Massive Spirals at z=0

Rotation Curve Shapes

Radial Acceleration Relation

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Comparison with Massive Spirals at z=0

Rotation Curve Shapes

Radial Acceleration Relation

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

[CII] Stacking: Extended Gas Emission

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Future Prospects:

Ultra-deep [CII] observations: → More extended rotation curves → Proposal currently under review

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Future Prospects:

Ultra-deep [CII] observations: → More extended rotation curves → Proposal currently under review

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Rest-frame UV-to-NIR imaging: → Actual stellar mass distribution → Proposal approved!!!

Conclusions:

1. At cosmic noon $(z \approx 1-3)$

HI will be largely out of reach even with the SKA CO and H α rotation curves do not probe MOND regime

Conclusions:

1. At cosmic noon $(z \approx 1-3)$

HI will be largely out of reach even with the SKA CO and H α rotation curves do not probe MOND regime

2. At cosmic dawn (z > 4)

[C_{II}] line is the best option to trace extended rotation curves Synergy ALMA+JWST to build accurate mass models

Conclusions:

1. At cosmic noon $(z \approx 1-3)$

HI will be largely out of reach even with the SKA CO and Hα rotation curves do not probe MOND regime

2. At cosmic dawn (z > 4)

[C_{II}] line is the best option to trace extended rotation curves Synergy ALMA+JWST to build accurate mass models

3. Evolution of a_0 with z

 $a_0 \propto (1+z)^b$ with b>3 \rightarrow ruled out (too low M_{bar})

 $a_0 \propto (1+z)^{3/2} \rightarrow$ seems unlikely (need accurate M_{bar})

More Slides

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Warm ionized gas in galaxies at z~1-3

 IFU observations of Hα and [OIII]λ5007 redshifted in the NIR.

• More than 80% of main-sequence galaxies host a rotating disk.

• Most star formation occurs in regular disks, not in galaxy mergers.

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Rotation curves from different emission lines

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Weak Non-Circular Motions at z~4.8

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Testing MOND in High-z Galaxies

Three Scaling Laws -> Three Acceleration Scales

 $a_{\rm BTFR} \rightarrow Normalization BTFR$ \rightarrow Global baryon-to-DM ratio across galaxies $a_{CDR} \rightarrow$ Critical Surface Density \rightarrow Transition baryon to DM dominated galaxies at R=0 $a_{RAR} \rightarrow$ Acceleration Scale \rightarrow Transition baryon to DM domination inside galaxies

Federico Lelli (INAF – Arcetri Astrophysical Observatory)

Galaxy Dynamics: Basic Theory

For a stationary axisymmetric system embedded in $\Phi(R, z)$:

$$V_{c}^{2} \equiv -R \frac{\partial \Phi}{\partial R} = \overline{v_{\theta}}^{2} + \sigma_{R}^{2} \left[\frac{\sigma_{\theta}^{2}}{\sigma_{R}^{2}} - 1 - \frac{\partial \ln \rho}{\partial \ln R} - \frac{\partial \ln \sigma_{R}^{2}}{\partial \ln R} - \frac{R}{\sigma_{R}^{2}} \frac{\partial \overline{v_{R} v_{z}}}{\partial z} \right]$$

$$\overline{v_{\theta}} = V_{rot} \text{ (ordered motions)} \quad \text{Velocity dispersion (random motions)} \simeq \sigma_{los}$$

Federico Lelli (INAF – Arcetri Astrophysical Observatory)