Some relativistic metric MONDian extensions of gravity

Sergio Mendoza <sergio@astro.unam.mx> Instituto de Astronomía Universidad Nacional Autónoma de México (UNAM)

> 40 years of MOND St Andrews, Scotland JUNE 06, 2023

Gravity apple tree (Mariana Espinosa 2019)

https://prezi.com/rdkivznlhgga/the-gravity-apple-tree

In México: Andrés Guevara y Basoasabal (1748-1801).

 $\$ Pasati
empos de cosmología o entretenimientos familiares acerca de la disposición del universo (1789)

Cosmological passtime or family entertainment about the disposition of the universe * Instituonum Elementarium Philosophiæ(1796)

S. Galindo (2012) Revista Mexicana de Física, **58**-2.

Dela Disposicion del Omberto Dela Disposicion del Omberto Dempuestos a peticion de un Amigo por cuya mano los dedica el Autor

arria Patria a muy Kustre, y mui Noble Giudad

De Santa Fe' y Real de Minas

de

Guanazuato.

Newtonian non-relativistic gravity (based on Kepler's 3rd law)

O Rotation curves (Kepler's third law):

 $v \propto \frac{M^{1/2}}{r^{1/2}}.$

Centrifugal balance a \propto v²/r.
Acceleration force is then:

$$a = -G_{\rm N} \frac{M}{r^2}.$$

• Calibrate with observations:

 $G_{\rm N} = 6.67 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{s}^{-2} \,\mathrm{kg}^{-1}.$

Extended non-relativistic gravity (based on Tully-Fisher's law

• Rotation curves (Tully-Fisher law): $v \propto M^{1/4}$.

- **)** Centrifugal balance $a \propto v^2/r$.
- Acceleration force is then: $a = -G_{\rm M} \frac{M^{1/2}}{r}.$
- Calibrate with observations:

 $G_{\rm M} \approx 8.94 \times 10^{-11} \,\mathrm{m^2 \, s^{-2} \, kg^{-1/2}}.$

• Simplest form of MOND found since: $a_0 := \frac{G_M^2}{G_N}$.

Milgrom (1983) obtained result requiring Newton's 2nd law to be modified. Since $(v^2/r) = a = GM/r^2$, then: $(v^2/r)^2 = a^2 = a_0 GM/r^2$, i.e. MOdified Newtonian Dyn.

Relativistic Kepler's 3rd law

• Weakfield geodesic motion (massive particles):

$$g_{00} = 1 + \frac{2\phi}{c^2} = 1 - \frac{2G_{\rm N}M}{rc^2}.$$

• Isotropic coordinates:

$$\mathrm{d}s^2 = g_{00}\mathrm{d}t^2 - \left(1 - 2\gamma\phi/c^2\right)\delta_{kl}\mathrm{d}x^k\mathrm{d}x^l.$$

• Spherical coordinates:

$$g_{rr} = -1 - \frac{2\gamma G_{\rm N}M}{rc^2}$$

Lensing observations imply $\gamma = 1$. Schwarzschild solution of Einstein's field equations also imply $\gamma = 1$.

Relativistic Tully-Fisher law

• Weakfield geodesic motion (massive particles):

$$g_{00} = 1 + \frac{2\phi}{c^2} = 1 - \frac{2G_{\rm M}M^{1/2}}{c^2} \ln\left(\frac{r}{r_{\star}}\right)$$

• Isotropic coordinates:

$$\mathrm{d}s^2 = g_{00}\mathrm{d}t^2 - \left(1 - 2\gamma\phi/c^2\right)\delta_{kl}\mathrm{d}x^k\mathrm{d}x^l.$$

• Spherical coordinates:

$$g_{rr} = -1 - \frac{2\gamma G_{\rm M} M^{1/2}}{c^2}$$

Lensing observations imply $\gamma = 1$. Mendoza et al. (2013) Mendoza & Olmo (2015), Mendoza (2023) C Lensing on elliptical, spiral and galaxy groups can be modelled using total matter distributions with isothermal profiles (M_T = v²r/G) and DM profiles obey the same Tully-Fisher relation of baryonic matter of spirals: v ∝ M_b^{1/4}.
 C Take GR -Schwarzschild- + DM.

$$g_{00S} = 1/g_{11S} = 1 - \frac{2r_{\rm g}}{r} = 1 - \frac{2GM_{\rm T}(r)}{c^2r} = 1 - 2\left(\frac{v}{c}\right)^2$$

- The deflection angle $\beta_{GR} = F(g_{00S}, g_{11S}, r_i)$ can thus be calculated.
- This deflection angle is THE SAME for any metric theory of gravity and so $\beta_{GE} = \beta_{Ext}$.
- Last relation is valid for all r_i and so, it is possible to find $g_{11\text{Ext}}$ at $\mathcal{O}(2)$.

In short, Tully-Fisher law + lensing observations, at $\mathcal{O}(2)$ yield:

$$g_{00} = 1 - \frac{2G_{\rm M}M^{1/2}}{c^2} \ln\left(\frac{r}{r_{\star}}\right), \qquad g_{rr} = -1 - \frac{2G_{\rm M}M^{1/2}}{c^2}.$$

Hence: $\gamma = 1$ as in relativistic Kepler's 3rd law

Mendoza et al. (2013), Mendoza & Olmo (2015), Mendoza (2023)

Action and field equations

- * General metric action with curvature-matter couplings (Harko & Lobo 2018): $S = \int F(R, \mathcal{L}_{\text{matt}}) \sqrt{-g} \, \mathrm{d}^4 x, \quad \text{where} \quad T_{\mu\nu} := -\frac{2c}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{\text{matt}}\right)}{\delta g^{\mu\nu}}.$
- * Null variations of the action $\delta S/\delta g^{\alpha\beta} = 0$ yield field equations:

$$F_R R_{\alpha\beta} + \left(g_{\alpha\beta} \nabla^\mu \nabla_\mu - \nabla_\alpha \nabla_\beta\right) F_R - \frac{1}{2} \left(F - \mathcal{L}_{\text{matt}} F_{\mathcal{L}_{\text{matt}}}\right) g_{\alpha\beta} = \frac{1}{2} F_{\mathcal{L}_{\text{matt}}} T_{\alpha\beta}$$

with a trace given by:

$$F_R R + 3\Delta F_R - 2\left(F - \mathcal{L}_{\text{matt}}F_{\mathcal{L}_{\text{matt}}}\right) = \frac{1}{2}F_{\mathcal{L}_{\text{matt}}}T.$$

* The general **non-geodesic** motion of particles is:

$$u^{\alpha}\nabla_{\alpha}u^{\beta} = \frac{\mathrm{D}u^{\beta}}{\mathrm{d}s} = \frac{\mathrm{d}^{2}x^{\beta}}{\mathrm{d}s^{2}} + \Gamma^{\beta}_{\ \mu\nu}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}s}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}s} = \left(g^{\beta\lambda} - u^{\beta}u^{\lambda}\right)\nabla_{\lambda}\left(F_{\mathcal{L}_{\mathrm{matt}}}\frac{\mathrm{d}\mathcal{L}_{\mathrm{matt}}}{\mathrm{d}\rho}\right),$$

which follows from the fact that $\nabla_{\alpha} T^{\alpha\beta} \neq 0$.

\simeq \sim \sim \sim \sim \sim \sim matt	
Deep MOND regime obtained when	
p = -3 and $v = u - 2$	
(i) Barrientos & Mendoza (2018)	p = -3
$\mathcal{L} \propto R^{-3} \mathcal{L}_{matt}^3 + \mathcal{L}_{matt}$ ("strong" curvature-matter coupling)	u = 3
	v = 1
(ii) Barrientos, Bernal & Mendoza (2021)	p = -3
	u = 0
$\mathcal{L} \propto R^{-3} + \mathcal{L}_{matt}^{-2}$ ("weak" curvature-matter coupling)	v = -2
Non-local Lagrangian: $\mathcal{L} \propto M^q R^p \mathcal{L}_{matt}^u + \mathcal{L}_{matt}$	
Deep MOND regime obtained when	
$p = 6q - 3$ and $u = 3 - 4q$ (cf. Carranza & Mendoza (2013) $M(r) = 4\pi r^2 \int_0^r \rho(r) dr$)	
(iii) Bernal, Capozziello,	u = 0
Hidalgo & Mendoza (2011)	p = 3/2
$\mathcal{L} \propto M^{3/4} R^{3/2} + \mathcal{L}_{ m matt}$	q = 3/4

Clusters of galaxies (Bernal, Lopez-Corona & Mendoza 2019)

* Mercury's perihelium anomaly explained (mainly) by relativistic corrections since $v \sim 50 \text{km/s} \Rightarrow v/c \sim 1.4 \times 10^{-4}$. For a cluster of galaxies $v \sim 1000 \text{km/s} \Rightarrow v/c \sim 3.3 \times 10^{-3}$.

Acceleration from the geodesic equation at O(4):

11

Using dimensional analysis in the deep MOND regime it is possible to construct a Post MONDian Parametrisation (PPM) in spherical symmetry at $\mathcal{O}(4)$ (Escoto & Mendoza 2023):

Cosmology

Present epoch Newtonian acceleration of the Universe with Hubble mass $M_{\rm H}$ is given by (cf. Bernal et al. 2011):

$$a \approx \frac{GM_{\rm H}}{R_{\rm H}^2} = \frac{G\left(c^3/GH_0\right)}{\left(c/H_0\right)^2} = cH_0 \approx 10^{-10} {\rm m \ s}^{-2} \approx a_0.$$

Universe at the present epoch is in the deep MOND regime

 \implies Simplest application: SNe Ia redshift – distance-modulus accelerated expansion.

Cosmography:
$$a(t) = 1 + H_0(t - t_0) - \frac{1}{2}q_0H_0^2(t - t_0)^2 + \dots$$

 $H := \dot{a}/a, \quad q := -\ddot{a}H^{-2}/a, \quad j := \ddot{a}H^{-3}/a, \quad s := \ddot{a}H^{-4}/a\dots$

Use FLRW metric for dust ($\mathcal{L}_{matt} = \rho c^2$ – Mendoza & Silva 2021) for the weak and strong curvature-matter field equations (turns out that mass conservation is valid). Get a curvature-matter coupled "Friedmann" equation and use the standard cosmological results (cf. Peebles 1993):

• Distance modulus $\mu = m - M$:

$$\mu(z) = 5 \log\left[\frac{H_0 d_L(z)}{c}\right] - 5 \log h(z) + 42.3856.$$

• Luminosity-distance:

$$d_L(z) = \frac{c}{H_0} \left[z + \frac{1}{2} (1 - q_0) z^2 - \frac{1}{6} \left(1 - q_0 - 3q_0^2 + j_0 \right) z^3 + \frac{1}{24} \left(2 - 2q_0 - 15q_0^2 - 15q_0^3 + 5j_0 + 10q_0j_0 + s_0 \right) z^4 + \dots \right].$$

Calibrate cosmographic parameters H_0, q_0, j_0 at present epoch using Union SNe Ia.

Results

(Barrientos, Bernal & Mendoza 2021)

No dark matter, no dark energy!

Fractional Friedmann equations (non-local toy model)

(Barrientos, Mendoza, Padilla 2021) Let $f(x) = x^k$ so that:

$$\frac{\mathrm{d}^{\alpha}f}{\mathrm{d}x^{\alpha}} = \frac{k!}{(k-\alpha)!} x^{k-\alpha} = \frac{\Gamma(k+1)}{\Gamma(k-\alpha+1)} x^{k-\alpha}, \qquad I^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(\tau)}{(t-\tau)^{1-\alpha}} \, d\tau,$$

for any number α . Last Step Modification: change derivatives to unknown order γ and assume $a \propto t^n$.

 $n = 0.5539 \pm 0.0046$ $\gamma = 1.4937 \pm 0.0003 \approx 3/2$ $H_0 = 68.37 \text{km/s/Mpc.}$

 $\gamma=3/2$ yields MOND (Giusti, 2020)!

Field equations for deep MOND regime should be of order $a^2/r \sim Ga_0\rho \sim Ga_0M/r^3$ and so simplest field equation is:

 $\nabla \cdot (\phi |\nabla \phi|) \propto \rho,$

which corresponds to the well known p-Poisson equation with p=3 that comes from the non-quadratic Lagrangian:

$$\mathcal{L}_{p} = \kappa |\nabla \phi|^{p} + \phi \rho, \qquad \Longrightarrow \nabla \cdot \left(|\nabla \phi|^{(p-2)} \nabla \phi \right) = \frac{1}{p\kappa} \rho.$$

AQUAL is essentially a generalisation of the p-Poisson equation with:

$$\mathcal{L}_{AQUAL} = F(|\nabla \phi|) + \phi \rho, \implies \nabla \cdot \left(|\nabla \phi|^{-1} F' \nabla \phi \right) = \rho.$$

A complementary p-Poisson equation :

$$\nabla \cdot \left\{ \phi \nabla \left(|\nabla \phi|^{(p-2)} \right) \right\} = \frac{1}{p\kappa} \rho. \implies \dots \mathcal{L}_{\text{p-complem}} = \kappa \nabla \left(|\nabla \phi|^{(p-2)} \right) \cdot \nabla \phi + \phi \rho,$$

The addition of the p-Laplacian and the complementary p-Laplacian yields the following complete p-Poisson field equation:

$$\nabla^2 \left(|\nabla \phi|^{p-2} \phi \right) = \frac{\rho}{\kappa p}, \quad \Longrightarrow \quad \phi |\nabla \phi|^{(p-2)} = \frac{1}{2} |\nabla \phi^2| = \frac{4\pi}{p\kappa} \int \frac{\mathrm{d}V' \rho'}{|\mathbf{r} - \mathbf{r}'|}.$$

From now on, take p = 3 to get the deep MOND regime.

* Point mass source: $\rho = m\delta(\mathbf{r})$:

$$\phi |\nabla \phi| = |\nabla \phi^2|/2 \propto m/r, \implies \phi^2 \propto \ln(r), \implies a \propto m/r.$$

* Spherically symmetric configuration:

$$\phi \frac{\mathrm{d}\phi}{\mathrm{d}r} \propto \int \frac{
ho(\boldsymbol{r}_{\mathrm{int}}')\mathrm{d}V'}{|\boldsymbol{r}-\boldsymbol{r}_{\mathrm{int}}'|} - G \int \frac{
ho(\boldsymbol{r}_{\mathrm{ext}}')\mathrm{d}V'}{|\boldsymbol{r}-\boldsymbol{r}_{\mathrm{ext}}'|}.$$

Binary system in the frame of reference of the centre of mass:

$$\phi \frac{\mathrm{d}\phi}{\mathrm{d}r} \propto \mu/r, \implies a \propto \mu^{1/2}/r.$$

with $\mu := m_1 m_2/(m_1 + m_2)$ the reduced mass and $r := |\mathbf{r}_2 - \mathbf{r}_1|$ the separation between both masses. In other words, wide open binaries must show flat velocity profiles.

The complete p-Laplace equation can be generalised to a **complete-AQUAL** one:

$$\nabla^2 \left(|\nabla \phi|^{-1} \mathbf{F}'(|\nabla \phi|) \phi \right) = \rho, \implies \mathcal{L}_{\text{c-AQUAL}} = F(|\nabla \phi|) + \nabla \phi \cdot \nabla F.$$

References

- E. Barrientos and S. Mendoza. A relativistic description of MOND using the Palatini formalism in an extended metric theory of gravity. *European Physical Journal Plus*, 131:367, Oct. 2016.
- E. Barrientos and S. Mendoza. MOND as the weak field limit of an extended metric theory of gravity with torsion. European Physical Journal Plus, 132:361, Aug. 2017.
- E. Barrientos and S. Mendoza. MOND as the weak field limit of an extended metric theory of gravity with a matter-curvature coupling. *Physical Review D*, 98(8):084033, Oct. 2018.
- E. Barrientos, T. Bernal, and S. Mendoza. Non-vacuum relativistic extensions of MOND using metric theories of gravity with curvature-matter couplings and their applications to the accelerated expansion of the universe without dark components. International Journal of Geometric Methods in Modern Physics, 18(6):2150086-433, Jan. 2021a.
- E. Barrientos, S. Mendoza, and P. Padilla. Extending Friedmann Equations Using Fractional Derivatives Using a Last Step Modification Technique: The Case of a Matter Dominated Accelerated Expanding Universe. Symmetry, 13(2):174, Jan. 2021b.
- T. Bernal, S. Capozziello, G. Cristofano, and M. de Laurentis. Mond's Acceleration Scale as a Fundamental Quantity. Modern Physics Letters A, 26(36):2677-2687, Jan. 2011a.
- T. Bernal, S. Capozziello, J. C. Hidalgo, and S. Mendoza. Recovering MOND from extended metric theories of gravity. *European Physical Journal C*, 71:1794, Nov. 2011b.
- T. Bernal, O. López-Corona, and S. Mendoza. Dynamics of clusters of galaxies with extended $f(\chi)$ gravity. Rev. Mex. Astron. Astrof., 55:237–254, 2019.
- S. Mendoza. MOND as the basis for an extended theory of gravity. Canadian Journal of Physics, 93:217-231, Feb. 2015.
- S. Mendoza. Metric tensor at second perturbation order for spherically symmetric space-times. International Journal of Geometric Methods in Modern Physics, 20(7):2350107, Jan. 2023. doi: 10.1142/S0219887823501074.
- S. Mendoza and G. J. Olmo. Astrophysical constraints and insights on extended relativistic gravity. Astrophysics and Space Science, 357:133, June 2015.
- S. Mendoza and S. Silva. The matter Lagrangian of an ideal fluid. International Journal of Geometric Methods in Modern Physics, 18(4):2150059-1470, Jan. 2021.
- S. Mendoza, T. Bernal, X. Hernandez, J. C. Hidalgo, and L. A. Torres. Gravitational lensing with $f(\chi) = \chi^{3/2}$ gravity in accordance with astrophysical observations. *MNRAS*, 433:1802–1812, Aug. 2013.
- D. A. Carranza, S. Mendoza, and L. A. Torres. A cosmological dust model with extended f(χ) gravity. European Physical Journal C, 73:2282, Jan. 2013.
- S. R. Escoto and S. Mendoza. Spherically symmetric post-mondian approach to gravity using clusters of galaxies. In preparation.
- T. Harko and F. Lobo. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory. Cambridge Monographs on Mathem. Cambridge University Press, 2018. ISBN 9781108428743.
- P. J. E. Peebles. Principles of Physical Cosmology. 1993.