Challenge in galaxy clusters for MOND: Measuring mass profiles with galaxy kinematics

Pengfei Li Alexander von Humboldt Stiftung/Foundation

Humboldt fellow Leibniz-Institute for astrophysics

MOND40@St. Andrews June 5-9, 2023 arXiv: 2303.10175 **Collaborators:**

Yong Tian, Mariana Julio, Marcel Pawlowski, Federico Lelli, Stacy McGaugh, James Schombert, Justin Read, Po-Chieh Yu, Chung-Ming Ko

Measure the mass profiles of clusters

The third tracer: cluster galaxies

$\frac{1}{v}\frac{\partial}{\partial r}(v\sigma_r^2) + \frac{2\beta(r)\sigma_r^2}{r} = -\frac{GM(< r)}{r^2}$

v(r): galaxy number density σ_r^2 : radial velocity dispersion $\beta(r) = 1 - \sigma_t^2 / \sigma_r^2$: velocity anisotropy M(< r): total enclosed mass

Projection of integrated Jeans equation

$\sigma_{los}^2(R) = \frac{2}{\Sigma_{gal}(R)} \int_R^\infty \left(1 - \beta \frac{R^2}{r^2}\right) \frac{v(r)\sigma_r^2(r)r}{\sqrt{r^2 - R^2}} dr$

 $\Sigma_{gal}(R): \text{galaxy number density} \\ \sigma_r^2: \text{radial velocity dispersion} \\ \beta(r) = 1 - \sigma_t^2 / \sigma_r^2: \text{velocity anisotropy} \end{cases}$

Break the $M - \beta$ degeneracy

Virial shape parameters (Merrifield & Kent 1990) $v_{s1} = \frac{2}{5} \int_{0}^{\infty} GM\nu(5 - 2\beta) \sigma_{r}^{2}r dr = \int_{0}^{\infty} \Sigma_{gal} \langle v_{los}^{4} \rangle R dR$ $v_{s2} = \frac{4}{35} \int_{0}^{\infty} GM\nu(7 - 6\beta) \sigma_{r}^{2}r^{3} dr = \int_{0}^{\infty} \Sigma_{gal} \langle v_{los}^{4} \rangle R^{3} dR$

 $\Sigma_{gal}(R)$: galaxy number density σ_r^2 : radial velocity dispersion $\beta(r) = 1 - \sigma_t^2 / \sigma_r^2$: velocity anisotropy HIFLUGCS Sample: Highest Flux Galaxy Cluster Sample

63 clusters (Reiprich+2002) X-ray observations: ROSAT All-sky Survey Optical data: Zhang+(2011) + Simbad -> Tian

Requirements: 1. Offset between optical and X-ray centers < 60 kpc 2. >75 member galaxies Retain 16 clusters of galaxies in total

Positions and line-of-sight velocity of galaxies Example: A0085

Projected galaxy number density $\Sigma_{gal}(R)$

Galaxy number density

Parameterized with three Plummer spheres:

Then projection

 $3N_i$

 $4\pi a$

Mass profiles: cNFWt function At $r < r_t$: $M_{cNFW}(< r)$ $= M_{NFW}(< r) \left| tanh\left(\frac{r}{r}\right) \right|$ At $r > r_t$: $M_{cNFWt}(< r) = M_{cNFW}(< r_t) +$ $4\pi\rho_{cNFW}(r_t)\frac{r_t^3}{3-\delta}$

Six parameters with variable inner and outer slopes

Total mass profiles:

Five classical clusters with X-COP data

Total mass pofiles:

Five clusters without X-COP data

10¹⁵

1014

M

1012

1011

10¹⁰

0

200

600

Radius (kpc)

400

800

A0496

1000

velocity anisotropy $\beta(r) = 1 - \sigma_t^2 / \sigma_r^2$

Degenerated with mass profile.

Broken with two virial shape parameters: 4th-order of velocity dispersion

MASS BUDGET OF TEN RELAXED CLUSTERS

Cluster	r ₅₀₀	$M_{\rm gas,500}$	$M_{\star,500}$	$M_{\star,\mathrm{BCG}}$	$M_{\rm dyn,500}$	$M_{\rm hydro, 500}$	$M_{\rm dyn,500}/M_{ m hydro,500}$	fb
	(kpc)	$(10^{13}M_{\odot})$	$(10^{12}M_{\odot})$	$(10^{11}M_{\odot})$	$(10^{14} M_{\odot})$	$(10^{14} M_{\odot})$		
A0085	1217	6.67	4.39	19.05	8.44	4.66	1.81	0.086
A0262	755	1.08	1.47	5.62	1.37	0.83	1.64	0.094
A0496	967	2.79	2.60	10.72	4.61	2.39	1.92	0.069
A0576	869	2.00	2.13	14.13	3.94	2.18	1.80	0.060
A1795	1085	4.95	3.68	3.89	4.59	4.41	1.04	0.117
A2029	1247	8.24	4.99	41.69	8.07	6.37	1.27	0.113
A2142	1371	13.40	6.68	12.02	8.05	7.47	1.08	0.176
A2589	837	1.77	1.98	10.72	3.06	1.81	1.69	0.068
A3158	1013	3.75	3.11	14.79	4.59	3.55	1.29	0.091
A3571	1133	5.16	3.77	18.62	7.36	5.02	1.47	0.078

Testing RAR: Break down baryonic mass 1. Stellar mass in BCG: K-band luminosity from 2MASS + scaling relation (Cappellari 2013) 2. Stellar mass in satellite galaxies: Gas-stellar mass relation (Chiu et al. 2018) + galaxy number density profiles 3. Gas mass Extrapolations using the **B** function or the modified **B** function

A2029: extrapolations for gas mass at large radii

Bayonic acceleration GM_{bar} g_{bar} Total acceleration from Galaxy kinematics: **g**tot

Room for extra mass closes towards large radii.

Due to extrapolations?

Bayonic acceleration GM_{bar} g_{bar} Total acceleration from Galaxy kinematics: **g**tot

Room for extra mass closes towards large radii.

Due to extrapolations?

Bayonic acceleration GM_{bar} g_{bar} Total acceleration from Galaxy kinematics: **g**tot

Room for extra mass closes towards large radii.

Due to extrapolations?

Missing mass profiles in MOND:

Hydrostatic mass for X-COP clusters XMM-Newton deep observations in the outskirts

CONCLUSION

- 1. Dynamical equilibrium and hydrostatic equilibrium seem incompatible with MOND. How general and robust is the incompatibility?
- 2. We can test MOND in galaxy clusters now. Don't have to wait decades for new observations for possible missing baryons. Derive cumulative missing mass profiles!

BACKUP

23

Gas mass – stellar mass Relation within r500. Chiu+(2018)

A0085: r=96 kpc;

A0085: r=965 kpc;

Effect of completeness:

 $\sigma_{los}^2(R) = \frac{Z}{\Sigma_{gal}(R)} \int_R$

Radially varying completeness: 80% variation in completeness: 100% at small radii linearly decreases to 20% at outermost point;

40% variation in completeness: 100% at small radii linearly decreases to 60% at outermost point;

 $v(r)\sigma_r^2(r)r$

A0085: extrapolations for gas mass at large radii

A2142: extrapolations for gas mass at large radii

A3158: extrapolations for gas mass at large radii

A1795: extrapolations for gas mass at large radii

