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Fornax cluster:

* Second nearest galaxy cluster to us
(20 Mpc away)

» Contains dwarfs with different
masses and shapes




Fornax cluster:

» Second nearest galaxy cluster to us Very
(20 Mpc away) disturbed
« Contains dwarfs with different
masses and shapes
« The FDSDC catalog contains 564 dwarf
galaxies (353 used for the analysis) Mildly
« Most dwarf galaxies in the catalog are disturbed
dE and dSph (classified as the same

type)

« 50% completeness limit at M, = -10.5
mag (m_ = 21 mag) and y, . = 26 mag
arcsec

Undisturbed

Images and classification by Dr. Aku Venhola (2021)
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Brada & Milgrom 2000

In MOND: g,,. . higher

than in baryonic Dwarf
Newtonian model as )
dwarf is in MOND regime

In ACDM: g, much higher

than in baryonic Newtonian
modelas M, =M__ .+ M,

(MDM >> M

stellar

stellar)

In MOND: boost to g, limited

because g, .,, dominates

over g,,. (the EFE)

In ACDM: g,,,.. still much

higher than in baryonic
Newtonian model
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Brada & Milgrom 2000

In MOND: g,,. . higher In MOND: boost to g, limited

because g, .,, dominates

than in baryonic
Dwarf over g,,. (the EFE)

Newtonian model as
dwarf is in MOND regime

In ACDM: g, much higher
than in baryonic Newtonian In ACDM: g,,,.. still much

modelas M, =M__ .+ M, higher than in baryonic
(M, >>M Newtonian model

stellar

steIIar)

Dwarf galaxies will be more disturbed by tides in MOND than in ACDM

“Note that the inner region of a satellite [in ACDM] is affected by tides after significant tidal destruction of its
outer parts” (Kazantzidis et al. 2004)
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0. Ram-pressure stripping: gas should have already been pressure stripped (Venhola+ 2019)
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sffzcis of oravitzslonzl Intaraatlons o dWzris

0. Ram-pressure stripping: gas should have already been pressure stripped (Venhola+ 2019)

1. Harassment: disruption due to interactions with massive galaxies

Disruption (= 0.043 V2mr; , ACDM:m =m__.+ mg,

: _ &

timescale: W Gm,n,r;, | MOND: G —» G,, =G (a,+g,)/g.
Binney & Tremaine (2008) Y

Cluster
gravity
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0. Ram-pressure stripping: gas should have already been pressure stripped (Venhola+ 2019)

1. Harassment: disruption due to interactions with massive galaxies

Disruption  _ 0.043 V2m,r; ACDM: m =m__.+ mg,
i . d
timescale: W Gmyn,r,, MOND: G ~ G; =G (a,+49.)/g,
Binney & Tremaine (2008) T‘Ouster
i i i i i ’ : . G M gyyary — A g\c gravity
2. Tidal disruption: disruption from the cluster’s tidal field 5 ~Tal i
1/3 tid \7/
e G mdwarf , stellar + DM Baumgardt & ¢
ACDM: tid 2 (A g./A D) Makino 2003 Tidal stress
o _ ) ) (observed
Assume 4% of total DM halo within optical r, (Diaz-Garcia+ 2016) from X-rays)
1/3
MOND: r,, =0.374 G e Mawary Zhao 2005 *We obtain r , at pericentre for
(A g./A D) Zhao & Tian 2006 P,ce :R_ =0.29R,

(Baumgardt priv. comm.)



Tidal susceptibility from
harassment:

77hclr = tFornax/td

With t = 10x1 Gyr (Rakos+ 2001)

Fornax

Ift,>>1t___:n,. very small (the dwarf will
not be very affected by harassment)

Ift, <<t : N, very high (the dwarf will be very

Fornax"

affected by harassment)



Tidal susceptibility from
harassment:
77hclr = tFornax/td

With t = 10x1 Gyr (Rakos+ 2001)

Fornax

Tidal susceptibility from cluster
tidal field at pericentre:

Nig =Tl g

r, = radius containing half of the total
luminous mass of the object

r., = radius at which the gravitational tide

from an external object starts to dominate
over the self-gravity of the object

Ift,>>1t___:n,. very small (the dwarf will
not be very affected by harassment)

Ift, <<t : N, very high (the dwarf will be very

Fornax"

affected by harassment)

Ifr,,<<r,
dwarf gets
destroyed

gdwarf T rtid T r]tid J' gdwarf J' rtid l r]tid T
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ACDM MOND

* Tidal susceptibility from -
harassment: . 150
Tlhar = tFornax/ td %’ %122
With t, = 10+1 Gyr (Rakos+ 2001) % £
50
25

0.1 0.2 03 04 05 %o 01 02 0.3

Tidal susceptibility (7) Tidal susceptibility (1)




ACDM MOND

* Tidal susceptibility from g -
harassment: )
nhar = tFornax/td Eéo E{zz

Witht, = 10=1 Gyr (Rakos+ 2001) : £

50

* Tidal susceptibility from

0.2 0.3 0.4 0.5 0.1 0.2 03 0.4

C I u Ste r t| d a I ﬁ e I d . - ‘ Tidal susceptibility () ' Tidal susceptibility (1))

Mg =Tl Tig |
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With r, ~ 4 R, (Baumgardt+ 2010)
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ACDM MOND

* Tidal susceptibility from g s
harassment: )
— 3 125
Nhar = tFornax/td %" %0100
Witht, = 10+1 Gyr (Rakos+ 2001) = £
50
- Tidal susceptibility from " P TP S ]
cluster tidal field: | © Tidal susceptiviity () i " " el suscentivity (1) v
77tid = rh/rtid 201 25 I
With r, N% R, (Baumgardt+ 2010) £ £ 20 Hi
%" %015
. Effect of n,__is negligible in 2 £ 0] I.]I I
both cosmologies = - H-“.”

- MOND Ntid is about 5x hlghel’ . . . . . 0.5 1.0 1.5 2.0 2.5 3.0
than in /\CDM. Tidal susceptibility () Tidal susceptibility (n)
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- We expect that Fornax
dwarfs with n > (0.5-1)
will be tidally disturbed

~ NCDM: trend goes up
at n significantly
lower than expected

> Lack of dwarfs that
should still be
tidally stable

- MOND: trend goes up
at n a bit higher than
expected
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« At which n do the dwarfs start being classified as “perturbed” (in the
catalogue) in each model? == find min n_ value

 What is the maximum n reached by the dwarfs before being destroyed
in each model ? = find n___ value
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Step 1: We simulate orbits of test masses in the observed cluster potential for a grid with all
possible distance (R) and eccentricity (e) values.

® Record max n over the orbit, use it to assign disturbed probability or destruction (next
slide)

® Consider sky-projected separation from all possible angles.
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Step 2: assign probabilities to the orbits:

In order to fit the observational data we leave as free parameters:

e r _:radius of the constant density central region of the Fornax cluster

core

e Slope P, : power-law slope of dwarf radial distribution in cluster outskirts P.=r’(r+r,,)""

:
2

e Slope P_ : slope of the eccentricity probability distribution P,=1+slope

e Min n,: lowest n value at which the dwarf is disturbed.

® N, - N Value at which the dwarf is destroyed.

P, floor: minimum probability for a dwarf to appear disturbed if n < min n,, (e.g: due to
asymmetric star formation)

P.... ceiling: probability for a dwarf to appear disturbed right before it gets destroyed (n = n,..,,)
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Step 4: to find the set of simulation parameter
values that provide a good match to the observed Ly

%
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population, we use the Markov chain Monte Carlo < g?; -
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Step 4: to find the set of simulation parameter
values that provide a good match to the observed ]
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ACDM N-body

1

(Penarrubia+ 2009)

ndestr

MOND N-body

1.7 £ 0.3

ndestr
(Asencio+ 2022)

"hin, dist



Corclisions

Observations of Fornax dwarf morphologies tell us that some are disturbed
* Disturbed fraction higher towards center

Main process expected to be cluster tides (dwarfs should be gas poor)
- We expect maxn(r, /r,.) ~1

NACDM: Fornax dwarfs should not be tidally disturbed

* But observations imply they are disturbed (not due to detection limit)
* This requires stability limit of 7,,,, = 0.25" %4 to match observations (by 105 MCMC trials)

- (Tidal force)/(Internal gravity) ~ i’

MOND: Fornax dwarfs are expected to be disturbed (n is higher in this model due to EFE
and lack of cold dark matter)

* The required stability limit is 7, = 1.88" (%,
- N-body simulations imply Mgesr = 1.7 = 0.3
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« Dwarfs with larger size at
fixed mass are more
susceptible to tides, but
also harder to detect

« However, selection
effects alone insufficient
to explain lack of diffuse
dwarfs towards cluster
center (above red line)

« Most disturbed dwarfs at
projected distance < 500
kpc from the center.

® ° Undisturbed

° ° Disturbed
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Projected distance (kpc)

* rmax 1S the maximum R. at fixed stellar mass for the dwarf to remain detectable
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* Best fit
models Projected distance: Distribution of n: Disturbed fraction vs n:
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y (kpe)

200

100

—200

t=0 Myr

100

200

Central potential:
M = 2.18 x 1022 M

galaxy

Dwarf:
M. = 3.16 Xx 10" M

r.. = 0.84 kpc

Orbit:
R, = 150 kpc
e=0.74

N..., (Pericentre) = 2.5
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Pericentre
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. Penarrubia+ 2009: N-body
Sl — N | g simulations to explore the effects
8 \ 4 2 (. . . .
N 2 of tidal stripping on the structure
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=27 e / affected by tides.
.5 PP it YO P 5 4 //
4 a AN 7 o 0
18 ’// ,,,,, ~ . /:/' 2 "4
% ll// AN \\\ N //;' ﬁ 31 /,
=AUl ) N i . . .
AN A %, S ~- Solid — adiabatic response
SupT T ———— AT
N | j Dashed — destroyed
12 R 14 —
0 250 500 750 1000 1250 1500 1750 2000 a0 00 70 1000 1350 o0 170 2000 Mdestruction T 1.5

Time (Myr) Time (Myr)
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Proposed by Angus 2009 (MNRAS, 394, 527)

Cold dark matter (CDM) replaced by fast collisionless matter

* e.g. 11 eV/c? sterile neutrinos (Angus+2007)

 Only in galaxy clusters (galaxies unaffected by neutrinos if m < 100 eV/c?)

MOND is applied only to density perturbations

MOND effects become important only at z< 50

» e.g. Nusser 2002, Llinares+ 2008, Angus+ 2013, Katz+ 2013, Candlish 2016
Standard background cosmology, expansion and thermal history

It can explain:

* BBN

CMB

Bullet Cluster and 30 virialized clusters (Angus+ 2010, MNRAS, 402, 395)
Problems with ACDM on galaxy scales (e.g: planes of satellites problem)
KBC void and Hubble tension (MNRAS, 499, 2845)

El Gordo galaxy cluster (MNRAS, 500, 5249)


https://darkmattercrisis.wordpress.com/2020/11/20/52-beyond-the-standard-model-of-cosmology-mond-as-a-way-out-of-the-current-cosmological-crisis/
https://darkmattercrisis.wordpress.com/2021/01/16/54-the-interacting-galaxy-cluster-el-gordo-a-massive-blow-to-%CE%BBcdm-cosmology/
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rlistocgrams (P disturozines calling - P digtiurozines floor)

MOND

0.101
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0 .0

S S 0.08 1
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a A 0.021

0.00- 0.00-

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Pyiq difference values Py difference values

P disturbance ceiling > P disturbance floor P disturbance ceiling > P disturbance floor
at 2.730 significance at 2.770 significance.
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t = 2000 Myr

t = 2000 Myr
Ri - 150 kpC 100 Ri = 150 kpc 100
e =0.03 2 e =0.29 )
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o sl x (képc) = o —200  -100 0 100 200
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n=1.5 5 ¢ n=2.5 g o
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LOCAL GROUP DWARF SPHEROIDALS: CORRELATED DEVIATIONS FROM THE BARYONIC
TULLY-FISHER RELATION

STACY S. McGAUGH' AND JOE WOLF
! Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA; ssm@astro.umd.edu
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ABSTRACT

Local Group dwarf spheroidal satellite galaxies are the faintest extragalactic stellar systems known. We exam-
ine recent data for these objects in the plane of the Baryonic Tully—Fisher Relation (BTFR). While some dwarf
spheroidals adhere to the BTFR, others deviate substantially. We examine the residuals from the BTFR and find
that they are not random. The residuals correlate with luminosity, size, metallicity, ellipticity, and susceptibility of
the dwarfs to tidal disruption in the sense that fainter, more elliptical, and tidally more susceptible dwarfs deviate
farther from the BTFR. These correlations disfavor stochastic processes and suggest a role for tidal effects. We
identify a test to distinguish between ACDM and MOND based on the orbits of the dwarf satellites of the Milky
Way and how stars are lost from them.

Key words: dark matter — galaxies: dwarf — galaxies: formation — galaxies: halos — Local Group
Online-only material: color figures
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J |+ Ti/2/Tep T2/ Teu
r _ 1 Figure 6. Residuals from the BTFR (symbols as per Figure 1) plotted against the ratio of half-mass radius to tidal radius in the case of dark matter (left) and MOND
a2 (right). The plots are scaled identically. The tidal radius depends on the masses of satellite and host (Equations (4) and (5)). Masses are computed dynamically for
orl . - the case of dark matter (left: m = M),2) and using only baryonic mass in the case of MOND (right: m = Mj). The arrow marks the location where the average
photometric tidal radius equals the computed tidal radius. In the case of MOND, the location where dwarfs deviate form the BTFR corresponds well to the observed
T J photometric tidal radius, and the amount of deviation correlates with the size of a dwarf relative to its MONDian tidal radius.
o 1 1 - 1 | 1
0 50 100 150 200 250 * F, is measure of discrepancy from isolated MOND
D (kpe) prediction (F, < 1: Gobs > Owmonp)
Figure 5. Ellipticity of Local Group dwarf spheroidals as a function of distance « MOND pred ictions assumi ng virial equ ilibrium do not
from their host galaxy. Symbols as per Figure 1. The open square is Sagittarius . .
(Ibata et al. 1997). Leo T (¢ = 0.29 at D = 407 kpc) falls off the right edge of work in many cases, but tides expected to be
the plot _ _ significant in these cases
* Non-circular photos of Milky Way - MOND works well when satellite expected to be tidally
satellites suggest tidal disturbance stable (low n)
* Ellipticities higher at lower « ACDM predicts no tidal disturbance in all cases, which

distance, as expected for tides may conflict with observed signs of disturbance.



