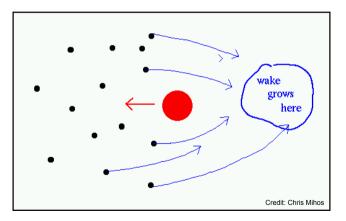
Can the observation of globular clusters in low-mass galaxies exclude the MOND modified gravity theory?

Michal Bílek

Paris Observatory LERMA & Collège de France

How to distinguish MOND from dark matter?


Strongest indication of MOND is its ability to model rotation curves. The same can be done with a suitable distribution of dark matter with Newtonian gravity (while not fully seen in simulations yet).

Additional discriminator tests are desirable:

- External field effect (e.g., satellites of galaxies), wide binary stars, relative velocities of galaxy clusters, growth of cosmological structure, efficiency of formation of tidal dwarf galaxies
- Here: test of modified gravity MOND (AQUAL/QUMOND) using dynamical friction

Dynamical friction: introduction

Massive body moving in the sea of lighter particles (satellite in a dark matter halo/stars of the host)

Dynamical friction: introduction

With Newtonian gravity, friction (de)acceleration given by Chandrasekhar formula (under certain circumstances):

$$a_{
m DF, NWT} = rac{2\pi \ln \Lambda G^2
ho m}{\sigma^2 X^2} \left[\operatorname{erf}(X) - rac{2X}{\sqrt{\pi}} \exp\left(-X^2\right)
ight],$$

 $X = rac{v}{\sqrt{2}\sigma}$

In A is **Coulomb logarithm**

CF breaks in some situations, e.g. satellite orbiting outside of a truncated galaxy

Dynamical friction in MOND - big perturbers

For big perturbers (major mergers of galaxies):

Dynamical friction weaker with MOND than in equivalent Newton+DM system

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Major/intermediate galaxy mergers rare
- No problem with bulgeless galaxies
- No problem with fast galactic bars

Dynamical friction in MOND - small perturbers

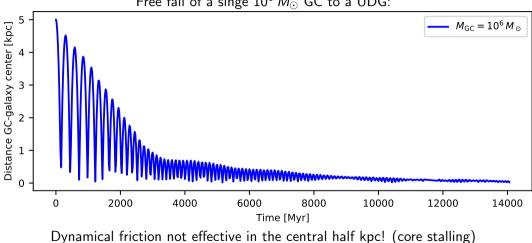
For small perturbers (e.g. GCs in galaxies):

- Dynamical friction is stronger for MOND than equivalent Newton+DM system
- Analytic expression for ratio of dynamical friction timescales: $\propto (a/a_0)^{-2}$ (MOND analog of Chandrasekhar formula = Sánchez-Salcedo formula, no mathematical derivation)
- GCs of low-surface-brightness galaxies experience extreme dynamical friction!
- GCs sink in the centers of the galaxies in ~ 1 Gyr (less than the age of GCs)

MOND excluded (Ciotti & Binney 2004)?

Strong dynamical friction in ultra-diffuse galaxies?

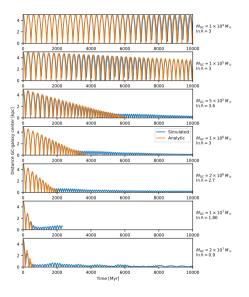
- ► Mass of a dwarf, size of a giant → low acceleration, strong enhancement of dyn. frict.
- ▶ Some of them have old and very massive GCs $(10^6 M_{\odot})$
- Do they exclude MOND?
- Let's do a simulation! (Bílek et al., 2021)

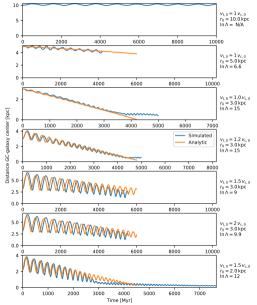

Simulation setup

- Phantom of RAMSES adaptive-mesh refinement code
- ▶ Spheroidal galaxy $M = 2 \times 10^8 M_{\odot}$, $R_e = 2 \, \text{kpc}$, in isolation (otherwise EFE)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

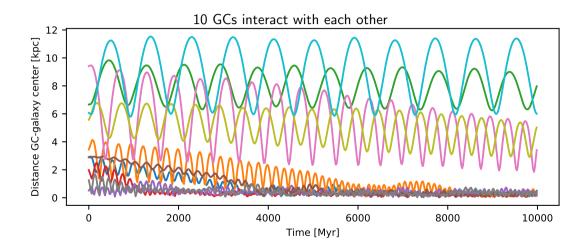
- ▶ Stars: 10^7 particles, $20 M_{\odot}$ per particle
- Maximum resolution 50 pc
- GCs modeled as point masses


Core stalling

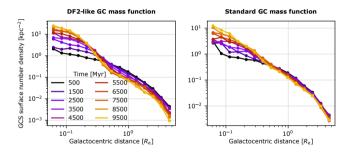

Free fall of a singe $10^6 M_{\odot}$ GC to a UDG:

ction not enective in the central han kpc: (core staning)

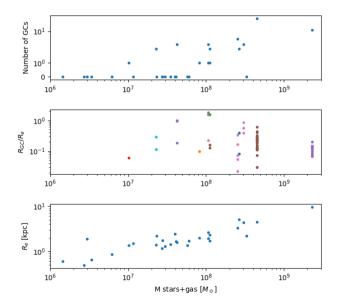
Test of the Sánchez-Salcedo formula (masses)

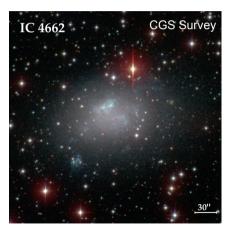


Test of the Sánchez-Salcedo formula (eccentities)


◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Simulations with many GCs




・ロト・西ト・山田・山田・山下

Simulations with many GCs

GCs of isolated dwarfs (in progress)

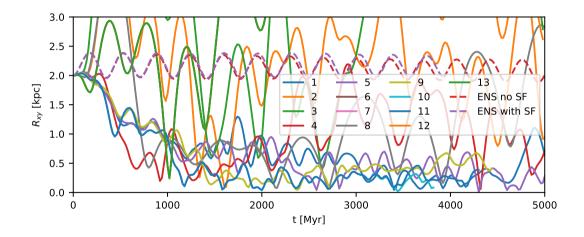
◆□ > ◆母 > ◆母 > ◆母 > ◆日 > ◆ ● ◆

Simulation setup

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Mass $10^8 M_{\odot}$ (or $0.2 \times 10^8 M_{\odot}$)

▶ 90% gas


- 2 kpc scale length gas, 1 kpc stars
- ► GC 10⁵ M_☉

Start at z = 2. Does GC survive for 10 Gyr?

Simulations

- Prograde, no SNe
- Retrograde, no SNe
- ► Radial, no SNe
- Prograde, SNe included

Effect of supernovae

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Less massive GC

• GC
$$10^4 M_{\odot}$$
 – survives even without SNe

Fornax dwarf (very preliminary)

- EFE from the MW is low (pericenter: $g_{\rm ext}/g_{\rm int} \approx 0.5$)
- We made simulation in isolation, no EFE, resolved GCs
- \blacktriangleright \rightarrow GCs sink in ca. 3 Gyr
- Fornax needs parameters hitting borders of allowed ranges, or a special solution (e.g. a merger of dwarfs), or another MOND theory (not QUMOND)

Summary

- Formula for dynamical friction in MOND exists, works only sometimes!
- GCs of spheroidal UDGs prevented from full sinking by core stalling
- Massive GCs of isolated disk dwarfs without star formation sink fast if co-rotate, slow if counterrotate

- SNe in gas-rich dwarfs prevent GCs from settling in the galaxy center
- Fornax Dwarf seems to require a special solution
- Case of non-isolated dwarfs remains to be explored