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In the ΛCDM scenario, theoretical arguments and collisionless
N−body simulations predict that galaxies are embedded in dark
matter (DM) halos characterized by a ρ(r) ∝ r−1 central cusp [13].
Observational results seem to suggest, from the analysis of the central
velocity dispersion profiles of dwarf galaxies, that the DM distribution
has a cored density distribution [11, 5].
Several solutions to this (apparent) contradiction, such as self-
interacting DM [6], baryon feedback [14] or simply a misinterpre-
tation of the observational data [7], have been proposed so far. In
this preparatory work we investigate this matter further in the modi-
fied Newtonian dynamics (MOND) paradigm, in the context of the so
called equivalent Newtonian systems (ENS).

The core-cusp problem

In the Bekenstein & Milgorm formulation [1] of MOND [8] the Pois-
son equation

∆Φ = 4πGρ (1)

is substituted by the non-linear field equation

∇ ·
[
µ

(
||∇Φ||
a0

)
∇Φ

]
= 4πGρ, (2)

where a0 ≈ 10−8cm s−2 is a scale acceleration and the interpolating
function µ(x) is known only in its asymptotic limits

µ(x) →x≫1 1, µ(x) ∼x≪1 x, (3)

so that for ||∇Φ|| ≫ a0 Eq. (2) is in the Newtonian regime, while
for ||∇Φ|| ≪ a0 one recovers essentially the so-called deep-MOND
regime and Eq. (2) simplifies to the

∇ · [||∇Φ||∇Φ] = 4πGρa0. (4)

Note that, in both cases, any given baryonic mass density ρ can be
taken out from the classical Poisson equation (1) obtaining the rela-
tion

µ

(
||gM ||
a0

)
gM = gN + S (5)

between the MOND and Newtonian force fields gM and gN , and
where S ≡ ∇ × h(ρ) is a density-dependent solenoidal field. It can
be proved that the latter is identically null for systems in spherical,
cylindrical or planar symmetry, while it is generally non-zero for arbi-
trary configurations of mass.
For a given system in MOND, one can always define a model in
Newtonian gravity with the same baryon density (and velocity distri-
bution) and and additional ”DM halo” such that the total potential is
the same of the MOND model. We now discuss the concept of equiv-
alent Newtonian system.

At any instant, it can be considered the potential Φ generated by
a distribution ρB of baryonic mass, according the MOND law (2).
The same potential Φ is justified in the ENS by a total density
ρN := ρB + ρDM , according to the Newtonian law (1). Under the
simplifying assumption of spherical symmetry, the density ρN in
the ENS is related to ρB as

ρM (r) =
[
µ(x)) + xµ′(x))

]
ρN (r)− 2

r
µ(x)

∫ r

0
ρN (r)dr. (6)

In the centre, the argument x = ||∇Φ(r)||/a0 tends to zero if the
baryons have a flat core, or even if they have a weak enough cusp,
i.e. ρB(r) ∼ ρB0(rs/r)

α with α < 1. For such a case, it holds the
deep MOND asymptotic µ(x) ∼ x in the centre, and the formula
(6) returns

ρN (r) ∼ 5− α

4

√
a0ρB0r

α
s

π(3− α)G
· r−

1+α
2 . (7)

This means for the DM a weaker cusp ρDM (r) ∝ r−
1+α
2 < r−1

than the one emerging from the simulations.
In particular, for a flat baryon density, one has

ρDM (r) ∼ 5

4

√
a0ρB0

3πG
· r−1/2. (8)

The associated gravitational acceleration becomes

g(r) = ||∇Φ(r)|| ∼
√

4

3
πGa0ρB0 · r1/2, (9)

while the velocity for circular stable orbits is

vcirc(r) ∼
4

√
4

3
πGa0ρB0 · r3/4, (10)

that one could compare with empirical velocity profiles.

Structure of equivalent Newtonian systems

Modified Newtonian dynamics

In the figures, are shown the rotation curves vcirc(r) and the cu-
mulative masses M(r) =

∫ r
0 4πr2ρ(r)dr for an exponential baryon

distribution ρB(r) := ρB0e
r/rs, with scalar radius of rs := 3 kpc

and total mass of 1012 solar masses. The blue lines refers to the total
mass ρN in the ENS, while the red lines correspond to the baryon
component only, and the grey lines to the DM one.

Other examples are given in this figure, for the so called γ−models
[4], defined by the density profile

ρB(r) =
3− γ

4π

Mrc
rγ(r + rc)4−γ

, (11)

with total mass M := 1012M⊙, scale radius rc := 3 kpc and logarith-
mic density slope γ := 0.5 in blue, γ := 1 in red, γ := 1.5 in green,
and γ := 2 in grey. Solid lines represent the baryonic densities, while
the dashed lines (which are approximately overlapping) plot the DM
densities, in log-log scale.

Structure of equivalent Newtonian systems

Code and initial conditions

The N−body simulations discussed here have been performed with
a modified version of the publicly available nmody particle-mesh
MOND code (see [12]). The latter uses a non-linear Poisson solver to
compute Φ from Eq. (2) on a spherical grid in polar coordinates.
We assumed the following forms for the interpolation function

µ1(x) =
x√

1 + x2
; µ2(x) =

x

1 + x
. (12)

Our simulations span a range of N between 104 and 106. As a
rule, the simulations were extended up to t = 300tDyn, where

tDyn ≡
√
2r3h/GMtot and rh is the radius containing half of the

total mass of the system Mtot.
The positions for the particles of the i−th component (baryonic or
DM) in spherical systems were sampled from the family of γ−models,
with density profile given by Eq. (11).
Initial particle velocities are extracted from a position-independent
Maxwell-Boltzmann distribution and normalized to obtain the wanted
value of the initial virial ratio 2K/|W |.
Following [3] we enforce the spherical symmetry by propagating parti-
cles only using the radial part of the evaluated force field, so that the
system behaves effectively as a spherical shell model [15]. For each
simulation we recover the (spherical) phantom DM density as

ρDM = (4πG)−1∇ · (gM − gN ) (13)

where the Newtonian force field gN has been evaluated and averaged
on the radial coordinate.

Numerical Simulations

Simulations and results

10-6

10-4

10-2

100

102

10-1 100 101 102

γ0=0

ρ

r/rc

Baryons
Halo ENS

t=0

10-1 100 101 102

γ0=0.5

r/rc

10-1 100 101 102

γ0=1

r/rc

10-1 100 101 102

γ0=1.5

r/rc

10-1 100 101 102

γ0=2

r/rc

In the figure above we show the final density profile (t = 300tDyn)
of purely radial collapses (purple lines) and that of the phantom DM
of the ENS (black lines, evaluated using Eq. 13) for systems starting
from cold (2K/W = 0) γ−model initial conditions (red lines).
In all cases (γ = 0, 0.5, 1, 1.5 and 2), even if the mass density relaxes
to a rather cuspy distribution, the parent ENS has a flat DM halo.
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Above we show the final states of collapses starting with ini-
tial conditions characterized by a moderate cusp (γ = 1) and
3 × 103 ≤ 2K/|W | ≤ 0.3. In this cases we observe that (at least) for
colder initial conditions and warm, the DM in the ENS has a cored
density profile. Remarkably, for intermediate values of the initial
virial ratio, the halo of the ENS presents several slope changes at
small radii. For both sets of simulations, the results are qualitatively
unchanged independently on the choice of µ.

Numerical Simulations

The preliminary results of this work can be summarized as follows:

•Analytical estimates suggest that the presence of a flat core in the
DM distribution embedding a spheroidal galaxy as evidenced by
some observational studies, can be interpreted in the context of
MOND as purely the effect of the phantom DM having a week
cusp, independently on the specific value of the central logarithmic
density slope of the baryons. Remarkably, a week cusp can be of-
tem mistaken for a core.

• The end product of simplified MOND N−body simulation with
enforced spherical symmetry have ENS with markedly flat cores,
for a broad spectrum of initial values of density slope and virial
ratio, despite the fact that the baryon density always has is rather
cuspy at inner radii.

As mentioned above, the simulation presented here are rather un-
realistic in their nature, in particular due to the imposed spherical
symmetry. Other numerical experiments with full MOND force and
clumpy initial conditions are on the way. In that case, one can not
evaluate the DM density in the simple spherical approximation using
Eq. (13), but could instead use the so-called Quasi-linear formulation
of MOND (QuMOND) [9] where one first evaluates the Newtonian
field gN Eq. 1 and then uses it as the source density term for the
phantom halo potential after applying the algebraic step

ρ̃DM = −(4πG)−1∇ · [ν(gN/a0)gN ] , (14)

where ν(x) is the reciprocal of the previously defined MOND interpo-
lating function µ(y).
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