
  

Three ways of looking at the
radial acceleration relation

w/ Richard Stiskalek, Deaglan Bartlett & Pedro Ferreira

5 June 2023 MOND40

Harry Desmond

arXiv:2303.11314     arXiv:2301.04368     arXiv:2305.19978

https://arxiv.org/abs/2303.11314
https://arxiv.org/abs/2301.04368
https://arxiv.org/abs/2305.19978


  

● The RAR and its significance

● The underlying RAR: optimising galaxy nuisance parameters

● The functional form of the RAR assessed by symbolic regression

● The RAR as the fundamental correlation of late-type galaxy dynamics

● Conclusions
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Introduction. The radial acceleration relation

● Relates acceleration sourced by 
baryons (gbar) to total acceleration as 
measured by rotation velocity (gobs)

● 2,696 points from 147 late-type 
galaxies (SPARC sample)

● Regularity and low scatter hard to 
understand in ΛCDM
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Introduction. The radial acceleration relation

3. Residuals correlated with anything? 
Optimum baryonic and dynamic variable? 

2. Fitting functions 
arbitrary, with MOND 
limits by construction 

1. Large obs. 
scatter & errorbars; 

correlated  
deviations 



  

1. The underlying RAR

● Previous RAR results use maximum 
a priori galaxy parameters and 
propagate their uncertainties as 
statistical

● Incorrectly assumes uncorrelated 
deviations in gbar and gobs, leading 
to “bands” on RAR plane

● Proper analysis jointly infers ~768 
parameters → need HMC
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dex

● 8% uncertainty reducible to 0 
with additional plausible extra 
data uncertainties



  

● 8% uncertainty reducible to 0 
with additional plausible extra 
data uncertainties

● Byproduct: galaxy-by-galaxy 
measurement of distance / 
inclination / mass-to-light. E.g. 
uRAR gives 10% distance 
measurement! 

dex



  

2. The functional form of the RAR

1) Are the MOND IFs optimal descriptions of the RAR?

2) Do optimal functional fits obey the MOND limits (and hence may be considered new IFs)?
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2. The functional form of the RAR

→  Exhaustive Symbolic Regression (ESR)
– All functions up to complexity 9 from operator set {+, -, *, /, pow, exp, sqrt, sq, inv, gbar, θ}

– Judged according to information efficiency in compressing the data (Minimum Description 
Length principle)

– Papers: arxiv:2211.11461 - arxiv:2301.04368 - arxiv:2304.06333

– Code & data: https://github.com/DeaglanBartlett/ESR - https://zenodo.org/record/7339113 

1) Are the MOND IFs optimal descriptions of the RAR?

2) Do optimal functional fits obey the MOND limits (and hence may be considered new IFs)?

https://arxiv.org/abs/2211.11461
https://arxiv.org/abs/2301.04368
https://arxiv.org/abs/2304.06333
https://github.com/DeaglanBartlett/ESR
https://zenodo.org/record/7339113


  



  

● ESR functions superior to IFs and double power law

● ESR does not recover the generating function on mocks

● Best functions on real data do not have deep-MOND limit



  

● Newtonian limit often found; deep-MOND limit rarely

● Can’t recover MOND behaviour even from MOND mocks!      
→ Uncertainties and dynamic range of data insufficient



  

3. Fundamentality of the RAR



  

3. Fundamentality of the RAR

1.  No residual correlations with any other variable

3.  Can account for all other correlations

2. Tightest projection of galaxies’ dynamical parameter space

4. No other correlation possesses these properties
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Can any other correlation do this?

● Form general dynamical variable

● How predictable is D from baryonic 
variables at any θ?
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Tightest projection accounting for all other 
correlations? Yes.

Can any other correlation do this? No.

ExtraTrees regressor

● Form general dynamical variable

● How predictable is D from baryonic 
variables at any θ?

● θ=arctan(1/2) (gobs) is most 
predictable, from gbar alone

● RAR mock data (dashed) can 
account for all correlations of D with 
any baryonic quantity at any θ

● Mock data from the 2nd strongest 
correlation, Sigma–Jobs, cannot



  

● The underlying RAR − derived by optimising galaxy nuisance parameters 
to propagate their uncertainties correctly − has intrinsic scatter 0.034 ± 
0.002 dex and shows no evidence of deviation from the Simple or RAR IF

● The data is not currently powerful enough for symbolic regression based 
on the minimum description length principle to establish the optimal 
function form of the RAR or whether it has MONDian limits

● The RAR accounts for all correlations of radial dynamics with baryonic 
properties, making it the fundamental relation of late-type galaxy dynamics

Conclusions
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● Discover functions describing a dataset  
rather than parameters of predefined function

● Difficulties:

– Larger search space makes 
convergence harder

– Optimisation methods of numerical 
regression not applicable

● Advantages:

– Much more general (reduces 
confirmation bias)

– Easy to prevent overfitting

– Highly interpretable

Symbolic Regression overview

Numerical regression:  y = 6 + 1x + 0.8x2

Symbolic regression:  y = 1 + x2 + 10cos(x)



  

Exhaustive Symbolic Regression
I. Function generation & optimisation

1) Generate all possible trees with given complexity = 
#nodes, with placeholder operators labelled by arity 
(number of arguments to operator)

2) Decorate with all operator permutations

3) Simplify and remove duplicates (tree reordering, 
parameter permutations, simplifications, 
reparametrisation invariance, parameter 
combinations)

4) Calculate maximum-likelihood parameter values

5) Repeat for other desired complexities



  

Simplifications make an exhaustive search feasible



  

Many physics functions have complexity < 10

3 5 5

7 9 9



  

Exhaustive Symbolic Regression
II. Model selection principle: minimum description length

● Purpose of functional 
fit is data compression

● Most information-
efficient function has 
minimum L(D)

● Both accuracy and 
complexity expressed 
in nats → can be 
combined

● Accounts for both 
functional and 
parametric complexity. 
Accuracy is likelihood.



  

Test case 0: Benchmarking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 46 47 48 49 50

Complexity

10−17

10−14

10−11

10−8

10−5

10−2

M
S

E

ESR

PySR

DataModeler

FFX

QLattice

● feynman_I_6_2a dataset from the SRBench 2022 Competition

● Not only does ESR get by far the lowest error... it discovers the standard normal!



  

SPARC 
data



  

RAR IF 
mock



  

Simple 
IF + 
EFE 
mock
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