The universal structure of spherical galaxies

Tom Richtler Departamento de Astronomía Universidad de Concepción

isolated

centre of the Fornax cluster

Issues

- isolated elliptical galaxies and central galaxies in galaxy clusters
- the Modified Hubble Profile and its universality
- What has this to do with MOND?
- the Baryonic Tully-Fisher Relation for early-type galaxies and deviating galaxies
- remarks on clusters of galaxies

Galaxy Sample

isolated ellipticals

NGC 6411 Richtler+in prep. NGC 7796 Richtler+2015 NGC 7507 Lane+2015 NGC 5812 Richtler+subm. NGC 4240 Richtler+ in prep.

central galaxies

NGC 1399 Fornax Schuberth+2010 NGC 4486 Virgo Murphy+2014 NGC 3311 Hydra I Richtler+2011, 2020 Hilker+ 2018 NGC 6166 Abell 2199 Bender+2015 Kormendy+2009: 42 Virgo galaxies

Oemler 1976: the structure of ellipticals and cD galaxies (333 citations) influential paper in establishing the myth of cD halos

18 NGC 6166 A 2670 cD 20 22. 24 26. 28. Sv 18. A 1413 cD NGC 4839 20. 22. 24 26. 28. 0.5 0.0 0.5 1.0 2.0 0.0 2.0 2.5 1.5 2.5 3.0 1.0 1.5 3.0 logr

4 central galaxies

The masses of elliptical galaxies

No disk symmetry is necessary

Observational parameters: Integrated galaxy light projected velocity projected velocity dispersion

M87-Virgo cluster

Dynamical tracers: radial velocities of globular clusters planetary nebulae

X-rays: assumption of hydrostatic equilibrium, structureless gas

Central galaxies have rich globular cluster systems

NGC 1399 in the Fornax cluster

Very Large Telescope (Cerro Paranal)

The most popular elliptical galaxy luminosity profiles

Reynolds 1913 – Andromeda nebula

Hubble 1930

de Vaucouleurs 1948

Sersic 1963

Jaffe 1983 3-D profile

Hernquist 1990 3-D profile

 $I(r) \sim r^{-2}$ $(1+r/rc)^{-2}$ $-b_n \left[\left[\frac{R}{R_e} \right]^{\frac{1}{n}} - 1 \right]$ $\rho(r) \sim \left(\frac{r}{r_0} \right)^{-2} \left(1 + \frac{r}{r_0} \right)^{-2}$ $\rho(r) \sim r^{-1} \left(r + r_0 \right)^{-3}$

why so many different profiles? observational reasons – better photometry of galaxy components theoretical reasons – finite mass, analytical potential-density pairs, analytical deprojection

Less popular: the modified Hubble profile (MHP)

$$I(r) \sim \left[1 + \left(\frac{r}{r_c}\right)^2\right]^{-1}$$

Textbook: Binney & Tremaine – Galactic Dynamics

The cored isothermal sphere (CIS)

Variables

$$\tilde{\rho} = \frac{\rho}{\rho_0}$$
 $\tilde{r} = \frac{r}{r_0}$
 $r_0 = \sqrt{\frac{9\sigma^2}{4\pi G\rho_0}}$
^{King-radius}["]
^{King-radius}["]
^{King-radius}

structure equation for the cored isothermal sphere

$$\frac{d}{d\,\tilde{r}} \left[\tilde{r}^2 \frac{d\ln\tilde{\rho}}{d\,\tilde{r}} \right] = -9\,\tilde{r}^2\tilde{\rho}$$

numerical solution: BT, 1987, p.229

the modified Hubble profile is a good representation of the CIS out to a few King radii

The "universality" of galaxy light profiles - galaxy centres show pronounced individuality dust recent star formation cusps non-stellar continuum

- round galaxies do not need to be spherical
- with these caveats: outside the very centre galaxy luminosity profiles of (presumably) spherical galaxies are universal

There is no photometric sign of a transition to DM dominance!

NGC 1399 - a MONDian cored isothermal sphere?

luminosity profiles miss signatures of the mass profiles !

Milgrom 1984: MONDian isothermal sphere has finite mass! MHP can describe the part with power-law -2

NGC 4240 - a faint isolated elliptical galaxy (Salinas+2015)

NGC 7507 - an isolated elliptical galaxy

Salinas et al. 2012 Lane et al. 2015

distance 23 Mpc

$$M_V = -21.6$$

NGC 7507: a galaxy without dark matter!

Lane et al. 2015: GMOS/Gemini spectroscopy

MOND models

flattened along the line-of-sight?

NGC 6166 - central galaxy of Abell 2199

Bender et al. 2015

Bender et al. 2015:

This photometry is errorneous! There is no photometric cd-Halo

NGC 6166 is elongated and anisotropic!

The Baryonic Tully-Fisher Relation

early-type galaxies

Slit spectroscopy around NGC 3311 - VLT/FORS2 Hilker+2018

NGC 3311: Field of velocity dispersion of the stellar light, globular clusters and cluster galaxies

inner region – the galaxy

There is no unique tracer population

Comments on the kinematic complexity around NGC 3311

- folding all dispersion data into one radial coordinate produces a radially rising velocity dispersion [] fakes a dark halo
- no "ideal Jeans world"
 superposition of multiple tracer populations
- no direct possibility to measure the underlying potential
- no evidence for "cluster dark matter"
- what we need: rich tracer population without complications
 I NGC 4636 (Schuberth+2012)
 I MONDian

38 galaxy clusters (Laroque+2006): gas densities from X-rays and SZ-measurements

- cluster gas is a multiphase medium
- baryonic estimate correct?
- hydrostatic equilibrium may overestimate the mass by an unknown amount

The baryonic Tully-Fisher relation with galaxy clusters from LaRoque+2006, and the void dwarf galaxy sample of Kurapati+2020

Conclusions

- bright spherical galaxies show universality, expressed by the Modified Hubble Profile
- conjecture: spherical galaxies are
 "cored MONDIan isothermal spheres"
- precise masses of central galaxies by the complexity of tracer kinematics difficult (or impossible) to measure
- there is no hard evidence for dark matter in galaxy clusters beyond the MONDian expectation