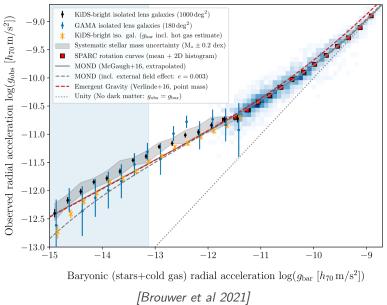

Hybrid MOND-dark matter models confronted with weak lensing data

> Tobias Mistele Case Western Reserve University

MOND40 conference, St. Andrews, June 9, 2023

Why hybrid models?


Hybrid models

*ν*HDM, dipolar dark matter, Aether Scalar Tensor Theory, Superfluid dark matter, ...

Example: ν HDM

Galaxies	CMB/Cosmology
MOND	no MOND
+	+
negligible $ ho_{ u}$	significant $ ho_{ u}$

Weak lensing

Aether Scalar Tensor Theory (AeST)

[TM, McGaugh, Hossenfelder, arXiv:2301.03499, under review]

AeST: Structure of equations around galaxies

In spherical symmetry*:

$$\begin{split} \Delta \hat{\Phi} &= 4\pi G_N f_G(\rho_b + \frac{\rho_c}{\rho_c}) \,, \\ \vec{\nabla} \left(\tilde{\mu} \left(\frac{|\vec{\nabla} \varphi|}{a_0} \right) \vec{\nabla} \varphi \right) &= 4\pi G_N f_G(\rho_b + \frac{\rho_c}{\rho_c}) \,. \end{split}$$

Acceleration inferred from kinematics (e.g. rotation curves):

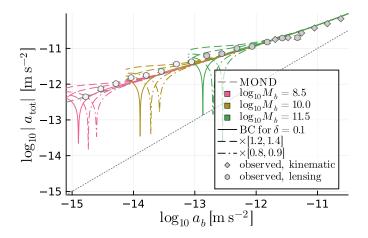
$$\vec{a}_{\rm tot} = -\vec{\nabla}(\hat{\Phi} + \varphi)$$

Acceleration inferred from lensing:

$$\vec{a}_{\rm tot} = -\vec{\nabla}(\hat{\Phi} + \varphi)$$

*[TM, arXiv:2305.07742]

AeST: Condensate density


$$\rho_{c} = \frac{m^{2}}{4\pi G_{N} f_{G}} \left(\frac{\dot{\varphi}}{Q_{0}} - \hat{\Phi} - \varphi\right)$$

- Choice of "integration constant" is physical
- Interpretation: Chemical potential of condensate
- \rightarrow Unlike MOND: To solve equations, need ρ_b + chemical potential

```
[NB: m^2 is called \mu^2 in Skordis et al. 2021]
```

AeST: Effect of condensate density

Deviations from MOND at large radii, depending on M_b and boundary condition (chemical potential)

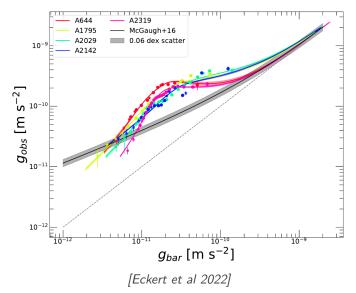
Assumes $m^2/f_G \approx {
m Mpc}^{-2}$. Can we make this smaller so ho_c is smaller?

AeST: Rough constraint on m^2/f_G

The m^2/f_G an $M_b = 10^{11} M_{\odot}$ galaxy needs to stay within 10% of the MOND-predicted acceleration at the a_b probed by weak lensing, assuming best-case boundary conditions

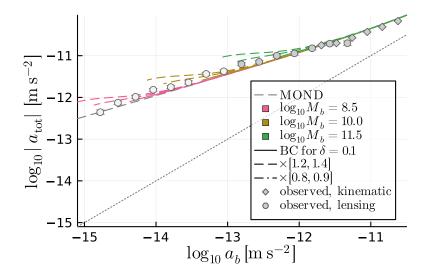
Bound on m^2/f_G	Description
$\lesssim 1{ m Mpc}^{-2}$	Galaxies, weak lensing $(a_b \ge 10^{-13} \mathrm{m/s}^2)$
$\lesssim 0.001 {\rm Mpc}^{-2}$	Galaxies, weak lensing $(a_b \ge 10^{-15}\mathrm{m/s}^2)$

AeST: Rough constraint on m^2/f_G

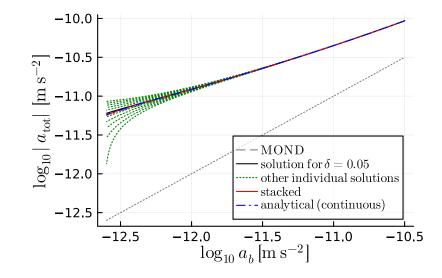

The m^2/f_G an $M_b = 10^{11} M_{\odot}$ galaxy needs to stay within 10% of the MOND-predicted acceleration at the a_b probed by weak lensing, assuming best-case boundary conditions

Bound on m^2/f_G	Description
$\lesssim 1{ m Mpc}^{-2}$	Galaxies, weak lensing ($a_b \geq 10^{-13}\mathrm{m/s}^2)$
$\lesssim 0.001 { m Mpc}^{-2}$	Galaxies, weak lensing ($a_b \ge 10^{-15} \mathrm{m/s}^2$)

 ${
m I}$ Then in galaxies, typical condensate density is $\sim 0.01
ho_{
m crit}$


Also, galaxy clusters...

Same kind of argument, now *demanding* deviations from MOND for clusters \rightarrow Probably need $m^2/f_G \gtrsim \,{
m Mpc}^{-2}$


Caveat: Negative densities

Usually unstable, need different form of equations/Lagrangian.

Caveat: Weak lensing data is stacked

Can hide MOND deviations. But need special boundary conditions.

Or why that shouldn't be surprising

• Hybrid models have CDM-like cosmology

- Hybrid models have CDM-like cosmology
- \rightarrow Need $\rho_{\rm DM}|^{\rm cosmological}$ of critical density $\rho_{\rm crit}$ (or a bit less)

- Hybrid models have CDM-like cosmology
- \rightarrow Need $\rho_{\rm DM}|^{\rm cosmological}$ of critical density $ho_{\rm crit}$ (or a bit less)
 - Galaxies are overdensities.

- Hybrid models have CDM-like cosmology
- \rightarrow Need $ho_{\rm DM}|^{\rm cosmological}$ of critical density $ho_{\rm crit}$ (or a bit less)
 - Galaxies are overdensities.
- $\rightarrow\,$ Rough lower bound in galaxies: $\rho_{\rm DM}|^{\rm galaxies}\gtrsim\rho_{\rm crit}$

- Hybrid models have CDM-like cosmology
- \rightarrow Need $ho_{\rm DM}|^{\rm cosmological}$ of critical density $ho_{\rm crit}$ (or a bit less)
 - Galaxies are overdensities.
- $\rightarrow\,$ Rough lower bound in galaxies: $\rho_{\rm DM}|^{\rm galaxies}\gtrsim\rho_{\rm crit}$
- ightarrow Lower bound on mass: $M_{
 m DM}({\it R} < 1\,{
 m Mpc}) \gtrsim 6\cdot 10^{11}\,{\it M}_{\odot}$

- Hybrid models have CDM-like cosmology
- \rightarrow Need $ho_{\rm DM}|^{\rm cosmological}$ of critical density $ho_{\rm crit}$ (or a bit less)
 - Galaxies are overdensities.
- $\rightarrow\,$ Rough lower bound in galaxies: $\rho_{\rm DM}|^{\rm galaxies}\gtrsim\rho_{\rm crit}$
- ightarrow Lower bound on mass: $M_{
 m DM}({\it R} < 1\,{
 m Mpc}) \gtrsim 6\cdot 10^{11}\,{\it M}_{\odot}$
 - This is larger than M_b for most galaxies!

- Hybrid models have CDM-like cosmology
- \rightarrow Need $\rho_{\rm DM}|^{\rm cosmological}$ of critical density $\rho_{\rm crit}$ (or a bit less)
 - Galaxies are overdensities.
- $\rightarrow\,$ Rough lower bound in galaxies: $\rho_{\rm DM}|^{\rm galaxies}\gtrsim\rho_{\rm crit}$
- ightarrow Lower bound on mass: $M_{
 m DM}({\it R} < 1\,{
 m Mpc}) \gtrsim 6\cdot 10^{11}\,{\it M}_{\odot}$
 - This is larger than M_b for most galaxies!
- $\rightarrow\,$ Hybrid models usually deviate from MOND at $\sim\,{\rm Mpc!}$

- Hybrid models have CDM-like cosmology
- \rightarrow Need $\rho_{\rm DM}|^{\rm cosmological}$ of critical density $\rho_{\rm crit}$ (or a bit less)
 - Galaxies are overdensities.
- $\rightarrow\,$ Rough lower bound in galaxies: $\rho_{\rm DM}|^{\rm galaxies}\gtrsim\rho_{\rm crit}$
- ightarrow Lower bound on mass: $M_{
 m DM}({\it R} < 1\,{
 m Mpc}) \gtrsim 6\cdot 10^{11}\,{\it M}_{\odot}$
 - This is larger than M_b for most galaxies!
- $\rightarrow\,$ Hybrid models usually deviate from MOND at $\sim\,{\rm Mpc!}$

Weak lensing reaches $\sim {\rm Mpc},$ does not see such deviations

Conclusion

- AeST: Likely tension between weak lensing and galaxy clusters...
- ...but there are some caveats (negative densities, boundary conditions, cluster analysis)
- Model-independent arguments suggest weak-lensing data is challenging for all hybrid models