AS1001:Extra-Galactic Astronomy

Lecture 3: Galaxy Fundamentals

Galaxy Fundamentals

- How many stars are in a galaxy?
- How did galaxies form?
- How many galaxies are there ?
- How far apart are they?
- How are they clustered?
- What is the mass of a typical galaxy?
- What is the mass density of the Universe ?

Extra-galactic Distances

For extragalactic distances, convenient unit is $\quad 1 \mathrm{Mpc}=10^{6} \mathrm{pc}$

$$
\begin{aligned}
m-M & =5 \log _{10}(d / \mathrm{pc})-5 \\
& =5 \log _{10}\left(\frac{d}{\mathrm{pc}} \times \frac{10^{6} \mathrm{pc}}{\mathrm{Mpc}}\right)-5 \\
& =5 \log _{10}(d / \mathrm{Mpc})+5 \log _{10}\left(10^{6}\right)-5 \\
& =5 \log _{10}(d / \mathrm{Mpc})+25
\end{aligned}
$$

Note: Still have $m=M$ at $d=10 \mathrm{pc}$

How many stars in a Galaxy?

M31 (Andromeda), at 0.9 Mpc , has an apparent magnitude $m_{\nu}=+3.5 \mathrm{mag}$

1) $M=m-5 \log _{10}(d / \mathrm{Mpc})-25=-21.3 \mathrm{mag}$
2) Assume $M_{*}=+5.5$ (Sun-like stars)
3) $F_{G A L}=n_{*} F_{*}$

$$
M_{G A L}-M_{*}=-2.5 \log _{10}\left(\frac{F_{G A L}}{F_{*}}\right)=-2.5 \log _{10}\left(n_{*}\right)
$$

4) $n_{*}=\frac{F_{G A L}}{F_{*}}=10^{-\left(M_{G A L}-M_{*}\right) / 2.5}=10^{-(-21.3-5.5) / 2.5} \approx 5 \times 10^{10}$ $n_{*}=50$ billion stars

How did Galaxies Form?

TWO COMPETING SCENARIOS

Initial Collapse:

(rotation => slower collapse)

Elliptical

Hierarchical Merging:
(many small high-z galaxies)

(fewer and larger low-z galaxies)

How did Galaxies Form?
 Initial Collapse
 Hierarchical Merging

- For:
- Nearby Ellipticals are old
- Ellipticals seen at high z
- Spirals/Irrs rotating
- Irregulars forming today
- Against:
- Mergers are seen
- For:
- Mergers are seen
- More Ellipticals in high density clusters
- HST sees more small Irrs at high z
- Against:
- Some large Ellipticals seen at high z
- Irregulars forming today

Galaxy Formation Scenarios

Initial Collapse:

Followed by merging:

Hierarchical merging:

Interacting Galaxies • Arp 87

Colliding Galaxies

Hubble
Heritage

The Antennae Galaxy: mid-merger

Coma Cluster of Galaxies

Cluster Formation Simulation

"Galactic Canibalism": forms a giant galaxy at the cluster centre.

Cluster Formation Simulation

"Galactic Canibalism": forms a giant galaxy at the cluster centre.

How many galaxies are there ?

STEP1: Take all-sky photos
STEP2: Count galaxies brighter than some magnitude STEP3: Assume most galaxies are like the MW* STEP4: Calculate depth and volume of sky STEP5: Calculate the SPACE DENSITY of galaxies
[* Big bright galaxies like the Milky Way are easiest to detect.
This does not mean they are the most numerous, just the most visible !]

Space Density of Galaxies

- Example: The MW has $M_{B}=\mathbf{- 2 0}$ mag. There are $\sim 10^{4}$ MW-like galaxies brighter than 14th mag over the whole sky. How many galaxies are there per (Mpc) ${ }^{3}$?

Distance modulus equation gives the depth of the survey, i.e. the maximum distance =>

Volume of the survey =>

$$
\mathrm{n}=\text { number density }
$$

$$
\begin{aligned}
& m-M=5 \log _{10}(d / \mathrm{Mpc})+25 \\
& d=10^{(m-M-25) / 5}=10^{(14-(-20)-25) / 5} \\
& =63 \mathrm{Mpc} \\
& \mathrm{Vol}=\frac{4 \pi}{3} d^{3}=\frac{4 \pi}{3}(63 \mathrm{Mpc})^{3} \\
& =10^{6} \mathrm{Mpc}^{3} \\
& n=\frac{N}{\mathrm{Vol}}=\frac{10^{4} \mathrm{gals}}{10^{6} \mathrm{Mpc}^{3}}=10^{-2} \frac{\mathrm{gals}}{\mathrm{Mpc}^{3}}
\end{aligned}
$$

There is $\sim \mathbf{1}$ MW-like galaxy per $100 \mathbf{M p c}^{3}$

How far apart are they?

Typical separation between galaxies:

$$
\begin{gathered}
\sim\left(100 \mathrm{Mpc}^{3}\right)^{1 / 3} \\
=4.6 \mathrm{Mpc}
\end{gathered}
$$

However, galaxies are strongly clustered.

Large Scale Structure

Galaxy Redshift "The Stickman": 1980

Surveys

Large Scale Structure

Galaxy Redshift Surveys

"The Great Wall": 1988

Large Scale Structure

Large Scale Structure

Mass-to-Light Ratios

- Assume that a galaxy's luminosity is proportional to its mass
- i.e., there is a mass-to-light ratio
- Expressed in solar units:

$$
\begin{aligned}
& \text { Mass-to-light ratio } \longrightarrow \frac{\mathbf{M}}{L}=X \frac{\mathbf{M}_{\odot}}{L_{\circledast}} \longleftarrow \text { Solar Mass } \\
& X=1 \text { for our Sun } \\
& X \sim 10 \text { for a typical Galaxy }
\end{aligned}
$$

The Mass of Andromeda (M31)

M31 has $M_{\mathrm{v}}=-21.3 \mathrm{mag}$. Determine its mass assuming a "typical" mass-to-light ratio, $X=10$.

$$
\begin{aligned}
& \mathbf{M}=\frac{\mathbf{M}}{L} L=10 \frac{\mathbf{M}_{\otimes}}{L_{\otimes}} L=10 \mathbf{M}_{\otimes} \frac{L}{L_{\otimes}} \\
& \mathbf{M}=10 \mathbf{M}_{\otimes} 10^{-\left(M_{\mathrm{V}}(\mathrm{M} 31)-M_{V}(\text { Sun })\right) / 2.5} \\
& \mathbf{M}=10 \times\left(2 \times 10^{30} \mathrm{~kg}\right) \times 10^{-(-21.3-5.4) / 2.5}
\end{aligned}
$$

$$
\mathbf{M}=2 \times 10^{41} \mathrm{~kg}=10^{11} M_{\otimes}
$$

Mass Density of the Universe

- Multiply (the space density of galaxies) x (the mass of a typical galaxy)
$=$ the mass density of the Universe:

$$
\rho=n \mathbf{M} \sim \frac{10^{11} \mathbf{M}_{\otimes}}{100 \mathrm{Mpc}^{3}}=10^{9} \frac{\mathbf{M}_{\otimes}}{\mathrm{Mpc}^{3}} \approx 10^{-28} \mathrm{~kg} / \mathrm{m}^{3}
$$

- This is the luminous matter, i.e. the stars (+gas+dust), that we can see.
- However ... "Dark Matter" dominates.

Mass Density of the Universe

- More accurate observations (using masses from the velocities of stars inside galaxies, and of galaxies inside clusters) gives a total density (including both luminous and Dark Matter):

$$
\rho \sim 3 \times 10^{10} \frac{M_{\odot}}{\mathrm{Mpc}^{3}} \sim 3 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}
$$

- Most of matter is "Dark Matter" !
- Mass of hydrogen atom: $\mathrm{m}_{\mathrm{H}}=1.7 \times 10^{-27} \mathrm{~kg}$
- Spread the matter smoothly, and there would be only a few hydrogen atoms per m^{3}.
- The air we breathe has $\sim 10^{25}$ atoms per m^{3}.

