AS1001:Extra-Galactic Astronomy

Lecture 3: Galaxy Fundamentals

Galaxy Fundamentals

- How many stars are in a galaxy ?
- How did galaxies form ?
- How many galaxies are there ?
- How far apart are they ?
- How are they clustered ?
- What is the mass of a typical galaxy ?
- What is the mass density of the Universe ?

Extra-galactic Distances For extragalactic distances, convenient unit is $1 \text{ Mpc} = 10^6 \text{ pc}$ $m - M = 5 \log_{10}(d / pc) - 5$ $= 5 \log_{10} \left(\frac{d}{\text{pc}} \times \frac{10^6 \text{pc}}{\text{Mpc}} \right) - 5$ $= 5 \log_{10}(d / \text{Mpc}) + 5 \log_{10}(10^6) - 5$ $= 5 \log_{10}(d / Mpc) + 25$

Note: Still have m = M at d = 10 pc

How many stars in a Galaxy? M31 (Andromeda), at 0.9 Mpc, has an apparent magnitude $m_{\nu} = +3.5$ mag $M = m - 5 \log_{10}(d/Mpc) - 25 = -21.3 \text{ mag}$ 1) 2) Assume $M_* = +5.5$ (Sun-like stars) 3) $F_{GAI} = n_* F_*$ $M_{GAL} - M_* = -2.5 \log_{10} \left(\frac{F_{GAL}}{F_*} \right) = -2.5 \log_{10} \left(n_* \right)$ 4) $n_* = \frac{F_{GAL}}{F_*} = 10^{-(M_{GAL} - M_*)/2.5} = 10^{-(-21.3 - 5.5)/2.5} \approx 5 \times 10^{10}$ $n_* = 50$ billion stars

How did Galaxies Form?

Initial Collapse

For:

- Nearby Ellipticals are old
- Ellipticals seen at high z
- Spirals/Irrs rotating
- Irregulars forming today
- Against:

•

– Mergers are seen

Hierarchical Merging

- For:
 - Mergers are seen
 - More Ellipticals in high density clusters
 - HST sees more small Irrs at high z
- Against:
 - Some large Ellipticals seen at high z
 - Irregulars forming today

PROBABLY BOTH OCCUR

Galaxy Formation Scenarios

Initial Collapse:

Followed by merging:

Hierarchical merging:

Colliding Galaxies

Interacting Galaxies • Arp 87

Colliding Galaxies

NGC 6050

Arp 148

The Antennae Galaxy: mid-merger

Coma Cluster of Galaxies

Cluster Formation Simulation

"Galactic Canibalism": forms a giant galaxy at the cluster centre.

Cluster Formation Simulation

"Galactic Canibalism": forms a giant galaxy at the cluster centre.

How many galaxies are there ?

- STEP1: Take all-sky photos
- STEP2: Count galaxies brighter than some magnitude
- STEP3: Assume most galaxies are like the MW*
- STEP4: Calculate depth and volume of sky
- STEP5: Calculate the SPACE DENSITY of galaxies

[* Big bright galaxies like the Milky Way are easiest to detect. This does not mean they are the most numerous, just the most visible !]

Space Density of Galaxies

Example: The MW has M_B = -20 mag. There are ~10⁴ MW-like galaxies brighter than 14th mag over the whole sky. How many galaxies are there per (Mpc)³ ?

Distance modulus equation gives the depth of the survey, i.e. the maximum distance =>

Volume of the survey =>

n = number density

 $m - M = 5 \log_{10} (d / \text{Mpc}) + 25$ $d = 10^{(m - M - 25)/5} = 10^{(14 - (-20) - 25)/5}$ = 63 Mpc $Vol = \frac{4\pi}{3} d^3 = \frac{4\pi}{3} (63 \text{ Mpc})^3$ $= 10^6 \text{ Mpc}^3$ $n = \frac{N}{\text{Vol}} = \frac{10^4 \text{ gals}}{10^6 \text{ Mpc}^3} = 10^{-2} \frac{\text{gals}}{\text{Mpc}^3}$

There is ~1 MW-like galaxy per 100 Mpc³

Mass-to-Light Ratios

- Assume that a galaxy's luminosity is proportional to its mass
- i.e., there is a **mass-to-light** ratio
- Expressed in solar units:

The Mass of Andromeda (M31) M31 has $M_V = -21.3$ mag. Determine its mass assuming a "typical" mass-to-light ratio, X = 10.

$$\mathbf{M} = \frac{\mathbf{M}}{L} L = 10 \frac{\mathbf{M}_{\otimes}}{L_{\otimes}} L = 10 \mathbf{M}_{\otimes} \frac{L}{L_{\otimes}}$$
$$\mathbf{M} = 10 \mathbf{M}_{\otimes} 10^{-(M_{\mathrm{V}}(\mathrm{M31}) - M_{V}(\mathrm{Sun}))/2.5}$$
$$\mathbf{M} = 10 \times (2 \times 10^{30} \mathrm{kg}) \times 10^{-(-21.3 - 5.4)/2.5}$$
$$\mathbf{M} = 2 \times 10^{41} \mathrm{kg} = 10^{11} M_{\otimes}$$

Mass Density of the Universe

- Multiply (the **space density** of galaxies) x (the **mass** of a typical galaxy)
 - = the mass density of the Universe:

$$\rho = n \mathbf{M} \sim \frac{10^{11} \mathbf{M}_{\otimes}}{100 \text{ Mpc}^3} = 10^9 \frac{\mathbf{M}_{\otimes}}{\text{Mpc}^3} \approx 10^{-28} \text{ kg} / \text{m}^3$$

- This is the **luminous matter**, i.e. the stars (+gas+dust), that we can see.
- However ... "Dark Matter" dominates.

Mass Density of the Universe

• More accurate observations (using masses from the velocities of stars inside galaxies, and of galaxies inside clusters) gives a **total density** (including **both luminous and Dark Matter**):

$$\rho \sim 3 \times 10^{10} \frac{M_{\odot}}{\text{Mpc}^3} \sim 3 \times 10^{-27} \text{kg/m}^3$$

- Most of matter is "Dark Matter" !
- Mass of hydrogen atom: $m_H = 1.7 \times 10^{-27} \text{ kg}$
- Spread the matter smoothly, and there would be only a few hydrogen atoms per m³.
- The air we breathe has $\sim 10^{25}$ atoms per m³.