ADA 15 - 10am Mon 24 Oct

Cross-Correlation analysis

Introduction to Projects 1 and 2

Cross-correlation

- **Cross-correlation function** (CCF) used to measure the position (and strength) of a feature in the data.
- Pattern *P*(*x*) matched in width (and shape) to the feature being measured.
- Shift the pattern by an offset *s*, and scale it to fit the data *D_i* with error bars *σ_i* measured at positions *X_i* :

$$CCF(s) = \frac{\sum_{i}^{i} P(X_{i} - s) D_{i} / \sigma_{i}^{2}}{\sum_{i}^{i} P^{2}(X_{i} - s) / \sigma_{i}^{2}}$$

$$Var[CCF(s)] = \frac{1}{\sum_{i}^{i} P^{2}(X_{i} - s) / \sigma_{i}^{2}}$$

$$ai$$

Optimal scaling, yet again!

Note CCF errors are correlated.

Noisy data $D_i \pm \sigma_i$

$$\chi^{2}(s) \qquad \chi^{2}min \sim N$$

CCF analysis fits a non-linear model to the

maximising CCF.

Good fit: $\chi^2_{min} \sim N$. Get $\sigma(s)$ from $\Delta \chi^2 = 1$.

data. Should minimise χ^2 , rather than

1 σ error bar: $\Delta \chi^2 = \chi^2 - \chi^2_{min} = 1$

Pattern too narrow

• Gaussian feature and pattern:

$$u_i = \langle D_i \rangle = A \exp\left\{-\frac{X_i^2}{2{\Delta_0}^2}\right\} \qquad P(x) = \exp\left\{-\frac{x^2}{2{\Delta}^2}\right\}$$

• Pattern width Δ **narrower** than the width Δ_0 of the feature in the data.

$$\left\langle CCF(s) \right\rangle \approx \left(\frac{2A^2}{1 + (\Delta/\Delta_0)^2} \right)^{1/2} \exp\left\{ -\frac{s^2}{2(\Delta^2 + \Delta_0^2)} \right\}$$

- CCF then has larger error bars, a shorter correlation length, and a higher but narrower peak.
- Poor fit: χ^2 minimum shallow.
- Larger error bar on s.

Wider 1σ error bar: $\Delta \chi^2 = \chi^2 - \chi^2_{min} = 1$

Pattern too wide

• Gaussian feature and pattern:

$$u_i = \langle D_i \rangle = A \exp\left\{-\frac{X_i^2}{2{\Delta_0}^2}\right\} \qquad P(x) = \exp\left\{-\frac{x^2}{2{\Delta}^2}\right\}$$

• Pattern width Δ wider than the width Δ_0 of the feature in the data.

$$\left\langle CCF(s) \right\rangle \approx \left(\frac{2A^2}{1 + (\Delta/\Delta_0)^2} \right)^{1/2} \exp\left\{ -\frac{s^2}{2(\Delta^2 + \Delta_0^2)} \right\}$$

- CCF then has smaller error bars, stronger correlations, and lower but wider peak.
- Poor fit: χ^2 minimum wide and shallow.
- Larger error bar on s.

Noisy data $D_i \pm \sigma_i$ Profile too wide P(x-s) scaled to fit data: CCF(s) $\chi^2(s)$ $\chi^2 min > N$

Wider 1σ error bar: $\Delta \chi^2 = \chi^2 - \chi^2_{min} = 1$

Cross-Correlation Radial Velocities

- Data: spectrum of black-hole binary candidate GRO J0422+32
- Pattern: "template" spectrum of normal K5V star of known radial velocity.
- Mask H α emission line. Fit continuum (e.g. splines, polynomial, running optimal average) with \pm 2 σ clipping to reject lines.

template spectrum

Wavelength and Velocity shifts

- Target spectrum D_i is measured at wavelengths λ_i and has associated errors σ_i .
- Template spectrum $P(\lambda)$ is measured on same (or very similar) wavelength grid. Errors negligible.
- For small velocity shift v :

$$P_{i}(\mathbf{v}) = P(\lambda_{i} - \Delta\lambda_{i}) = P(\lambda_{i}(1 - (\mathbf{v} / c)))$$
$$CCF(\mathbf{v}) = \frac{\sum_{i}^{i} P_{i}(\mathbf{v}) D_{i} / \sigma_{i}^{2}}{\sum_{i}^{i} P_{i}^{2}(\mathbf{v}) / \sigma_{i}^{2}}$$

Note that since *D* is redshifted relative to *P* in this example, CCF(v) will produce a peak at positive *v*.

Interpolate the Template P(λ), rather than the noisy data D(λ).

$$\Delta \lambda_i = \lambda_i \frac{\mathrm{v}}{\mathrm{c}}$$

Radial velocity of GRO J0422+32

- Subtract continuum fit.
- Cross-correlate data with template spectrum.
- Compute CCF for shifts in range \pm 1800 km s⁻¹.
- CCF shows peak between 500 and 600 km s⁻¹.
- Use $\Delta \chi^2 = 1$ for 1σ error bar on radial velocity.

Project 1 = HST lightcurve of OY Car

2 oscillations present.

Spinning magnetised white dwarf.

Amplitude and phase modulated by eclipse.

HST Lightcurve of OY Car

ADA-P1 : OY Car Oscillations

Project 2 = Keck Spectra of a Black-Hole Binary

13 spectra from Keck 10m on Mauna Kea.

Fit continuum.

Cross-correlate with template star spectra.

Measure 13 radial velocities.

Fit sine curve to measure velocity semiamplitude.

Work out constraints on the black hole mass.

ADA-P2 : Continuum Fit

ADA-P2 : Template Continuum Fit

Cross-Correlation Radial Velocities

Spectra => Velocities => Orbit=> Masses

Circular orbit model: $V(\phi) = \gamma + K_X \sin(2\pi\phi) + K_Y \cos(2\pi\phi)$ $K^2 = (K_X)^2 + (K_Y)^2$

 $K, P \Longrightarrow M_X, M_c$

ADA lectures are now finished $\, \odot \,$.

We've come a long way. You now have all the tools you need to tackle challenging data analysis projects.

The 2 Homework sets (done) and 2 Projects (to do) let you build expertise by putting these concepts and techniques into practice.

Thanks for listening !

Fini -- ADA 15

Thanks for listening !